【題目】小軍和小明玩一種抽卡片游戲,他們拿了八張撲克牌,將數(shù)字為、、、的四張牌給小軍,將數(shù)字為、、、的四張牌給小明,并按如下游戲規(guī)則進(jìn)行:小軍和小明各自的四張牌中隨機(jī)抽出一張,然后將抽出的兩張牌數(shù)字相加,若和為偶數(shù),小軍贏,若和為奇數(shù),則小明贏.
請(qǐng)用樹狀圖或列表法求小軍獲勝的概率.
這個(gè)游戲公平嗎?請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)是上一點(diǎn)且,過點(diǎn)畫線段,使點(diǎn)在的邊上且點(diǎn),與的一個(gè)頂點(diǎn)組成的小三角形與相似,則滿足條件的線段的長(zhǎng)度分別為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某所中學(xué)七、八、九年級(jí)各有6個(gè)班級(jí),每個(gè)班級(jí)人數(shù)為50左右,根據(jù)實(shí)際情況,決定開設(shè)“A:乒乓球,B:籃球,C:跑步,D:跳繩”這四種項(xiàng)目.為了解學(xué)生喜歡哪一種項(xiàng)目,該學(xué)校體育組隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中信息解答下列問題:
(1)樣本容量是________,請(qǐng)你為體育組提供一種較為合理的抽樣方案;
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校貝貝、晶晶、洋洋和妮妮是學(xué)校的校園之星,現(xiàn)要從這四人中選出兩人作為“陽(yáng)光體育”運(yùn)動(dòng)形象代言人,貝貝和晶晶同時(shí)被抽到的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB⊥BC,DC⊥BC,B、C分別是垂足,DE交AC于M,BC=CD,AB=EC,DE與AC有什么關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 某彩票中獎(jiǎng)率為,說明買張彩票,有張中獎(jiǎng)
B. 投擲一枚普通的正方體骰子,結(jié)果點(diǎn)數(shù)恰好是“”是不可能發(fā)生的
C. 在至的個(gè)數(shù)中隨機(jī)地取一個(gè),不是的概率是
D. 一副撲克牌,去掉大小王,從中任抽一張,恰好抽到的牌的花色是黑桃的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建立模型:如圖1,已知△ABC,AC=BC,∠C=90°,頂點(diǎn)C在直線l上.
(1)操作:
過點(diǎn)A作AD⊥于點(diǎn)D,過點(diǎn)B作BE⊥于點(diǎn)E.求證:△CAD≌△BCE.
(2)模型應(yīng)用:
①如圖2,在直角坐標(biāo)系中,直線:與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到直線.求直線的函數(shù)表達(dá)式.
②如圖3,在直角坐標(biāo)系中,點(diǎn)B(4,3),作BA⊥y軸于點(diǎn)A,作BC⊥x軸于點(diǎn)C,P是直線BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q(a,5a﹣2)位于第一象限內(nèi).問點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請(qǐng)求出此時(shí)a的值,若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)的面積為_______________;(請(qǐng)寫出作答步驟)
(2)在圖中畫出與關(guān)于直線l成軸對(duì)稱的;
(3)在直線l上找一點(diǎn)P,使PA+PB的長(zhǎng)最短,則這個(gè)最短長(zhǎng)度的平方為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在射線AB上依次作正方形A1B1B2C1、正方形A2B2B3C2、正方形A3B3B4C3…,點(diǎn)A1,A2,A3,…在射線OA上,點(diǎn)B1,B2,B3,…在射線OB上,若AB1=A1B1=1,則正方形AnBnBn+1Cn的邊長(zhǎng)為 _______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,銳角∠DAB的平分線AC交⊙O于點(diǎn)C,作CD⊥AD,垂足為D,直線CD與AB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:直線CD為⊙O的切線;
(2)當(dāng)AB=2BE,且CE=時(shí),求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com