已知:如圖,正方形ABCD的邊長為a,BM,DN分別平分正方形的兩個(gè)外角,且滿足∠MAN=45°,連接MC,NC,MN.
(1)填空:與△ABM相似的三角形是△
NDA
NDA
,BM•DN=
a2
a2
;(用含a的代數(shù)式表示)
(2)求∠MCN的度數(shù);
(3)猜想線段BM,DN和MN之間的等量關(guān)系并證明你的結(jié)論.
分析:(1)如圖(3)由條件可以得出∠BMA=∠3,∠ABM=∠ADN=135°,就可以得出△ABM∽△NDA,利用相似三角形的性質(zhì)就可以的得出BM•DN=a2
(2)由△ABM∽△NDA,可以得出BM:DA=AB:ND,再由正方形的性質(zhì)通過等量代換就可以得出△BCM∽△DNC.利用角的關(guān)系和圓周角的度數(shù)就可以求出結(jié)論.
(3)將△AND繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABF,連接MF,證明△ABF≌△ADN.利用邊角的關(guān)系得出△BMF是直角三角形,由勾股定理就可以得出結(jié)論.
解答:解:(1)∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵BM,DN分別平分正方形的兩個(gè)外角,
∴∠CBM=∠CDN=45°,
∴∠ABM=∠ADN=135°,
∵∠MAN=45°,
∴∠BMA=∠NAD,
∴△ABM∽△NDA,
BM
AD
=
AB
ND

∴BM•DN=a2

(2)由(1)△ABM∽△NDA可得BM:DA=AB:ND.
∵四邊形ABCD是正方形,
∴AB=DC,DA=BC,∠ABC=∠BCD=∠ADC=∠BAD=90°.
∴BM:BC=DC:ND.
∵BM,DN分別平分正方形ABCD的兩個(gè)外角,
∴∠CBM=∠NDC=45°.
∴△BCM∽△DNC.
∴∠BCM=∠DNC.
∴∠MCN=360°-∠BCD-∠BCM-∠DCN=270°-(∠DNC+∠DCN)=270°-(180°-∠CDN)=135°.

(3)線段BM,DN和MN之間的等量關(guān)系是BM2+DN2=MN2
證明:如圖,將△AND繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABF,連接MF.則
△ABF≌△ADN. 
∴∠1=∠3,AF=AN,BF=DN,∠AFB=∠AND.
∴∠MAF=∠1+∠2=∠2+∠3=∠BAD-∠MAN=45°.
∴∠MAF=∠MAN.
又∵AM=AM,
∴△AMF≌△AMN.
∴MF=MN.
可得∠MBF=(∠AFB+∠1)+45°=(∠AND+∠3)+45°=90°.
∴在Rt△BMF中,BM2+BF2=FM2
∴BM2+DN2=MN2
點(diǎn)評:此題考查了相似三角形的判定與性質(zhì)以及正方形的性質(zhì),全等三角形的判定與性質(zhì)以及正方形的性質(zhì)等知識.此題綜合性很強(qiáng),圖形比較復(fù)雜,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用與輔助線的準(zhǔn)確選擇.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長BC到點(diǎn)F,使CF=CE精英家教網(wǎng),連接DF,交BE的延長線于點(diǎn)G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
(3)若GE•GB=4-2
2
,求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在正方形OADC中,點(diǎn)C的坐標(biāo)為(0,4),點(diǎn)A的坐標(biāo)為(4,0),CD的延長線交雙曲線y=
32
x
于點(diǎn)B.
(1)求直線AB的解析式;精英家教網(wǎng)
精英家教網(wǎng)
(2)G為x軸的負(fù)半軸上一點(diǎn)連接CG,過G作GE⊥CG交直線AB于E.求證CG=GE;
(3)在(2)的條件下,延長DA交CE的延長線于F,當(dāng)G在x的負(fù)半軸上運(yùn)動的過程中,請問
OG+GF
DF
的值是否為定值,若是,請求出其值;若不是,請說明你的理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知,如圖:正方形ABCD,將Rt△EFG斜邊EG的中點(diǎn)與點(diǎn)A重合,直角頂點(diǎn)F落在正方形的AB邊上,Rt△EFG的兩直角邊分別交AB、AD邊于P、Q兩點(diǎn),(點(diǎn)P與點(diǎn)F重合),如圖所示:

(1)求證:EP2+GQ2=PQ2;
(2)若將Rt△EFG繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α≤90°),兩直角邊分別交AB、AD邊于P、Q兩點(diǎn),如圖2所示:判斷四條線段EP、PF、FQ、QG之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請說明理由;
(3)若將Rt△EFG繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(90°<α<180°),兩直角邊分別交AB、AD兩邊延長線于P、Q兩點(diǎn),并判斷四條線段EP、PF、FQ、QG之間存在何種確定的相等關(guān)系?按題意完善圖3,請直接寫出你的結(jié)論(不用證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,正方形ABCD的邊長為2a,H是以BC為直徑的半圓O上一點(diǎn),過H與圓O相切的直線交AB精英家教網(wǎng)于E,交CD于F.
(1)當(dāng)點(diǎn)H在半圓上移動時(shí),切線EF在AB、CD上的兩個(gè)交點(diǎn)也分別在AB、CD上移動(E、A不重合,F(xiàn)、D不重合),試問:四邊形AEFD的周長是否也在變化?證明你的結(jié)論;
(2)設(shè)△BOE的面積為S1,△COF的面積為S2,正方形ABCD的面積為S,且S1+S2=
1348
S,求BE與CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,正方形紙片ABCD的邊長是4,點(diǎn)M、N分別在兩邊AB和CD上(其中點(diǎn)N不與點(diǎn)C重合),沿直線MN折疊該紙片,點(diǎn)B恰好落在AD邊上點(diǎn)E處.
(1)設(shè)AE=x,四邊形AMND的面積為 S,求 S關(guān)于x 的函數(shù)解析式,并指明該函數(shù)的定義域;
(2)當(dāng)AM為何值時(shí),四邊形AMND的面積最大?最大值是多少?
(3)點(diǎn)M能是AB邊上任意一點(diǎn)嗎?請求出AM的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案