(2006•江西)問(wèn)題背景:某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到了如下兩個(gè)命題:

①如圖1,在正三角形ABC中,M,N分別是AC,AB上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=60°,則BM=CN;
②如圖2,在正方形ABCD中,M,N分別是CD,AD上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=90°,則BM=CN.
然后運(yùn)用類(lèi)比的思想提出了如下命題;
③如圖3,在正五邊形ABCDE中,M,N分別是CD,DE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°,則BM=CN.任務(wù)要求:
(1)請(qǐng)你從①,②,③三個(gè)命題中選擇一個(gè)進(jìn)行證明;
(2)請(qǐng)你繼續(xù)完成下面的探索:
①如圖4,在正n(n≥3)邊形ABCDEF…中,M,N分別是CD,DE上的點(diǎn),BM與CN相交于點(diǎn)O,試問(wèn)當(dāng)∠BON等于多少度時(shí),結(jié)論BM=CN成立;(不要求證明)
②如圖5,在正五邊形ABCDE中,M,N分別是DE,AE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°時(shí),試問(wèn)結(jié)論BM=CN是否還成立.若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.
【答案】分析:(1)正三角形ABC中,可通過(guò)全等三角形來(lái)證明BM=CN,由于∠BON=∠MBC+∠BCO=60°,而∠ACB=∠ACN+∠OCB=60°,因此∠ACN=∠MBC,又知道∠A=∠BCM=60°,AC=BC,因此△ACN≌△CBM,可得出BM=CN;正方形和正五邊形的證明過(guò)程與正三角形的一樣,都是通過(guò)全等三角形來(lái)得出線(xiàn)段的相等,證三角形的過(guò)程中都是根據(jù)∠BON和多邊形的內(nèi)角相等得出一組兩三角形中的一組對(duì)應(yīng)角相等,然后根據(jù)正多邊形的內(nèi)角和邊相等,得出BCM和CND全等,進(jìn)而得出BM=CN;(2)①由(1)的證明過(guò)程可知道∠MON的度數(shù)應(yīng)該是正多邊形的內(nèi)角的度數(shù),當(dāng)∠BON=時(shí),結(jié)論BM=CN成立,
②可參照(1)先得出三角形BCD和CDE全等,然后通過(guò)證三角形CEN和BDM全等來(lái)得出結(jié)論,在證三角形CEN和BDM全等的過(guò)程中也是通過(guò)∠BON與正五邊形的內(nèi)角相等得出一組對(duì)應(yīng)角相等,然后根據(jù)正五邊形的內(nèi)角減去第一對(duì)全等三角形中得出的相等角來(lái)得出另一組對(duì)應(yīng)角相等,可通過(guò)△BCD≌△CDE得出CE=BD,那么可得出三角形CEN和BDM全等,由此可得證.
解答:
解:(1)選命題①
在圖1中,∵△ABC是正三角形,
∴BC=CA,∠BCM=∠CAN=60°.
∵∠BON=60°,
∴∠CBM+∠BCN=60°.
∵∠BCN+∠ACN=60°,
∴∠CBM=∠ACN.
∴△BCM≌△CAN(ASA).
∴BM=CN.

選命題②
在圖2中∵四邊形ABCD是正方形,
∴BC=CD,∠BCM=∠CDN=90°.
∵∠BON=90°,
∴∠CBM+∠BCN=90°.
∵∠BCN+∠DCN=90°,
∴∠CBM=∠DCN.
∴△BCM≌△CDN(ASA).
∴BM=CN.

選命題③
在圖3中,∵五邊形ABCDE是正五邊形,
∴BC=CD,∠BCM=∠CDN=108°.
∵∠BON=108°,
∴∠CBM+∠BCN=108°.
∵∠BCN+∠DCN=108°,
∴∠CBM=∠DCN.
∴△BCM≌△CDN(ASA).
∴BM=CN.

(2)①當(dāng)∠BON=時(shí),結(jié)論BM=CN成立.
②BM=CN成立.
在圖5中,連接BD、CE,
∵五邊形ABCDE是正五邊形,
∴BC=CD,∠BCD=∠CDE=108°,CD=DE,∠CDE=∠DEA=108°.
∴∠BCD=∠DEA,
∴△BCD≌△CDE(SAS).
∴BD=CE,∠BDC=∠CED,∠DBC=∠ECD.
∵∠BON=108°,
∴∠OBC+∠OCB=108°.
∵∠OCB+∠OCD=108°,
∴∠OBC=∠OCD(即∠MBC=∠NCD).
∴∠MBC-∠DBC=∠NCD-∠ECD,即∠DBM=∠ECN.
∴∠CDE-∠BDC=∠DEA-∠CED,即∠BDM=∠CEN.
∴△BDM≌△CEN(ASA).
∴BM=CN.
點(diǎn)評(píng):本題主要考查了全等三角形,正多邊形等幾何知識(shí),是一道幾何型探究題,層層深入,體現(xiàn)了一個(gè)由特殊到一般的過(guò)程,考查學(xué)生的邏輯思維能力及歸納探索諸多方面的能力,是一道很好的壓軸題.本題是一道非常典型的幾何探究題,很好地體現(xiàn)了從一般到特殊的數(shù)學(xué)思想方法,引導(dǎo)學(xué)生漸漸地從易走到難,是新課標(biāo)形勢(shì)下的成熟壓軸題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年江西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•江西)一條拋物線(xiàn)y=x2+mx+n經(jīng)過(guò)點(diǎn)(0,)與(4,).
(1)求這條拋物線(xiàn)的解析式,并寫(xiě)出它的頂點(diǎn)坐標(biāo);
(2)現(xiàn)有一半徑為1,圓心P在拋物線(xiàn)上運(yùn)動(dòng)的動(dòng)圓,當(dāng)⊙P與坐標(biāo)軸相切時(shí),求圓心P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(北干初中 李月紅)(解析版) 題型:解答題

(2006•江西)問(wèn)題背景:某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到了如下兩個(gè)命題:

①如圖1,在正三角形ABC中,M,N分別是AC,AB上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=60°,則BM=CN;
②如圖2,在正方形ABCD中,M,N分別是CD,AD上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=90°,則BM=CN.
然后運(yùn)用類(lèi)比的思想提出了如下命題;
③如圖3,在正五邊形ABCDE中,M,N分別是CD,DE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°,則BM=CN.任務(wù)要求:
(1)請(qǐng)你從①,②,③三個(gè)命題中選擇一個(gè)進(jìn)行證明;
(2)請(qǐng)你繼續(xù)完成下面的探索:
①如圖4,在正n(n≥3)邊形ABCDEF…中,M,N分別是CD,DE上的點(diǎn),BM與CN相交于點(diǎn)O,試問(wèn)當(dāng)∠BON等于多少度時(shí),結(jié)論BM=CN成立;(不要求證明)
②如圖5,在正五邊形ABCDE中,M,N分別是DE,AE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°時(shí),試問(wèn)結(jié)論BM=CN是否還成立.若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•江西)問(wèn)題背景:某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到了如下兩個(gè)命題:

①如圖1,在正三角形ABC中,M,N分別是AC,AB上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=60°,則BM=CN;
②如圖2,在正方形ABCD中,M,N分別是CD,AD上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=90°,則BM=CN.
然后運(yùn)用類(lèi)比的思想提出了如下命題;
③如圖3,在正五邊形ABCDE中,M,N分別是CD,DE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°,則BM=CN.任務(wù)要求:
(1)請(qǐng)你從①,②,③三個(gè)命題中選擇一個(gè)進(jìn)行證明;
(2)請(qǐng)你繼續(xù)完成下面的探索:
①如圖4,在正n(n≥3)邊形ABCDEF…中,M,N分別是CD,DE上的點(diǎn),BM與CN相交于點(diǎn)O,試問(wèn)當(dāng)∠BON等于多少度時(shí),結(jié)論BM=CN成立;(不要求證明)
②如圖5,在正五邊形ABCDE中,M,N分別是DE,AE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°時(shí),試問(wèn)結(jié)論BM=CN是否還成立.若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江西省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•江西)問(wèn)題背景:某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到了如下兩個(gè)命題:

①如圖1,在正三角形ABC中,M,N分別是AC,AB上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=60°,則BM=CN;
②如圖2,在正方形ABCD中,M,N分別是CD,AD上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=90°,則BM=CN.
然后運(yùn)用類(lèi)比的思想提出了如下命題;
③如圖3,在正五邊形ABCDE中,M,N分別是CD,DE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°,則BM=CN.任務(wù)要求:
(1)請(qǐng)你從①,②,③三個(gè)命題中選擇一個(gè)進(jìn)行證明;
(2)請(qǐng)你繼續(xù)完成下面的探索:
①如圖4,在正n(n≥3)邊形ABCDEF…中,M,N分別是CD,DE上的點(diǎn),BM與CN相交于點(diǎn)O,試問(wèn)當(dāng)∠BON等于多少度時(shí),結(jié)論BM=CN成立;(不要求證明)
②如圖5,在正五邊形ABCDE中,M,N分別是DE,AE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°時(shí),試問(wèn)結(jié)論BM=CN是否還成立.若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案