【題目】觀察下列各式規(guī)律:① 52-22=3×7②72-42=3×11③ 92-62=3×11;;根據(jù)上面等式的規(guī)律:

1)寫出第6個(gè)和第n個(gè)等式;

2)證明你寫的第n個(gè)等式的正確性.

【答案】1)第6個(gè):,第個(gè):;(2)證明見解析

【解析】

1仿照①②③寫出第6和第n個(gè)等式即可;

2)結(jié)合(1)發(fā)現(xiàn)的規(guī)律,并運(yùn)用整式的四則混合運(yùn)算證明即可.

解:(1① 52-22=3×7;②72-42=3×11;③ 92-62=3×11;;

所以第6個(gè)等式為:152-122=3×27

所以第n個(gè)等式為:(2n+32-2n2=34n+3

2)證明:

左邊=2n+3+2n)(2n+3-2n

=34n+3

=右邊

所以第n個(gè)等式正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)開展的“好書伴我成長(zhǎng)”讀書活動(dòng)中,為了解八年級(jí)320名學(xué)生讀書情況,隨機(jī)調(diào)查了八年級(jí)部分學(xué)生讀書的冊(cè)數(shù).根據(jù)調(diào)查結(jié)果繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)本次接受調(diào)查的學(xué)生人數(shù)為_____________,圖①中m的值為______________;

(Ⅱ)求統(tǒng)計(jì)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)統(tǒng)計(jì)的樣本數(shù)據(jù),估計(jì)該校讀書超過3冊(cè)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);⑤當(dāng)1<x<4時(shí),有y2<y1 ,

其中正確的是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A=60°,∠C=75°AB=8,D、E、F分別在AB、BCCA上,則DEF的周長(zhǎng)最小值是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx2+x+3x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C,過點(diǎn)Cx軸的平行線交拋物線于點(diǎn)P.連接AC

1)求點(diǎn)P的坐標(biāo)及直線AC的解析式;

2)如圖2,過點(diǎn)Px軸的垂線,垂足為E,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OF,旋轉(zhuǎn)角為αα90°),連接FA、FC.求AF+CF的最小值;

3)如圖3,點(diǎn)M為線段OA上一點(diǎn),以OM為邊在第一象限內(nèi)作正方形OMNG,當(dāng)正方形OMNG的頂點(diǎn)N恰好落在線段AC上時(shí),將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形OMNG,當(dāng)點(diǎn)M與點(diǎn)A重合時(shí)停止平移.設(shè)平移的距離為t,正方形OMNG的邊MNAC交于點(diǎn)R,連接OP、OR、PR,是否存在t的值,使OPR為直角三角形?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為6E、F分別是邊CD、AD上動(dòng)點(diǎn),AEBF交于點(diǎn)G

1)如圖(1),若E為邊CD的中點(diǎn),AF=2FD,求AG的長(zhǎng).

2)如圖(2),若點(diǎn)FAD上從AD運(yùn)動(dòng),點(diǎn)EDC上從DC運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),同時(shí)到達(dá)各自終點(diǎn),求在運(yùn)動(dòng)過程中,點(diǎn)G運(yùn)動(dòng)的路徑長(zhǎng).

3)如圖(3),若E、F分別是邊CD、AD上的中點(diǎn),BDAE交于點(diǎn)H,求∠FBD的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FBFC

1)求證:四邊形ABFC是菱形;

2)若AD=,BE=1,求半圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線在第一象限內(nèi)交于兩點(diǎn),,則扇形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x軸于點(diǎn)和點(diǎn)A,交y軸負(fù)半軸于點(diǎn),且.有下列結(jié)論:(

;②;③;④.其中,正確結(jié)論的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案