(2013•玉林)如圖,△ABC是⊙O內(nèi)接正三角形,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°得到△DEF,DE分別交AB,AC于點(diǎn)M,N,DF交AC于點(diǎn)Q,則有以下結(jié)論:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周長等于AC的長;④NQ=QC.其中正確的結(jié)論是
①②③
①②③
.(把所有正確的結(jié)論的序號都填上)
分析:連結(jié)OA、OD、OF、OC、DC、AD、CF,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠AOD=∠COF=30°,再根據(jù)圓周角定理得∠ACD=∠FDC=15°,然后根據(jù)三角形外角性質(zhì)得∠DQN=∠QCD+∠QDC=30°;
同理可得∠AMN=30°,由△DEF為等邊三角形得DE=DF,則弧DE=弧DF,得到弧AE=弧DC,所以∠ADE=∠DAC,根據(jù)等腰三角形的性質(zhì)有ND=NA,于是可根據(jù)“AAS”判斷△DNQ≌△ANM;利用QD=QC,ND=NA可判斷△DNQ的周長等于AC的長;由于∠NDQ=60°,∠DQN=30°,則∠DNQ=90°,所以QD>NQ,而QD=QC,所以QC>NQ.
解答:解:連結(jié)OA、OD、OF、OC、DC、AD、CF,如圖,
∵△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°得到△DEF,
∴∠AOD=∠COF=30°,
∴∠ACD=
1
2
∠AOD=15°,∠FDC=
1
2
∠COF=15°,
∴∠DQN=∠QCD+∠QDC=15°+15°=30°,所以①正確;
同理可得∠AMN=30°,
∵△DEF為等邊三角形,
∴DE=DF,
∴弧DE=弧DF,
∴弧AE+弧AD=弧DC+弧CF,
而弧AD=弧CF,
∴弧AE=弧DC,
∴∠ADE=∠DAC,
∴ND=NA,
在△DNQ和△ANM中
∠DQN=∠AMN
∠DNQ=∠ANM
DN=AN

∴△DNQ≌△ANM(AAS),所以②正確;
∵∠ACD=15°,∠FDC=15°,
∴QD=QC,
而ND=NA,
∴ND+QD+NQ=NA+QC+NQ=AC,
即△DNQ的周長等于AC的長,所以③正確;
∵△DEF為等邊三角形,
∴∠NDQ=60°,
而∠DQN=30°,
∴∠DNQ=90°,
∴QD>NQ,
∵QD=QC,
∴QC>NQ,所以④錯(cuò)誤.
故答案為①②③.
點(diǎn)評:本題考查了圓的綜合題:弧、弦和圓心角之間的關(guān)系以及圓周角定理在有關(guān)圓的幾何證明中經(jīng)常用到,同時(shí)熟練掌握三角形全等的判定、等邊三角形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖是某手機(jī)店今年1-5月份音樂手機(jī)銷售額統(tǒng)計(jì)圖.根據(jù)圖中信息,可以判斷相鄰兩個(gè)月音樂手機(jī)銷售額變化最大的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過A,B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=
40
,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖,在直角梯形ABCD中,AD∥BC,AD⊥DC,點(diǎn)A關(guān)于對角線BD的對稱點(diǎn)F剛好落在腰DC上,連接AF交BD于點(diǎn)E,AF的延長線與BC的延長線交于點(diǎn)G,M,N分別是BG,DF的中點(diǎn).
(1)求證:四邊形EMCN是矩形;
(2)若AD=2,S梯形ABCD=
152
,求矩形EMCN的長和寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖,拋物線y=-(x-1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(-1,0).
(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案