分析 (1)根據(jù)角平分線定義得出∠GEF=$\frac{1}{2}$∠AEF,∠HEF=$\frac{1}{2}$∠BEF,求出∠GEF+∠HEF=90°,即可得出答案;
(2)根據(jù)平行線的性質(zhì)得出∠ABD+∠BDC=180°,根據(jù)角平分線定義得出∠ABE=$\frac{1}{2}$∠ABD,∠CDE=$\frac{1}{2}$∠BDC,根據(jù)平行線的性質(zhì)得出∠ABE=∠BEF,∠FED=∠CDE,求出∠BED=90°即可.
解答 (1)解:EG與EH垂直,∠EGH與∠EHG互余,
理由是:∵EG、EH分別平分∠AEF、∠BEF,
∴∠GEF=$\frac{1}{2}$∠AEF,∠HEF=$\frac{1}{2}$∠BEF,
∵∠AEF+∠BEF=180°,
∴∠GEF+∠HEF=90°,
∴EG與EH垂直,∠EGH與∠EHG互余,
故答案為:垂直,互余;
(2)證明:∵AB∥CD,
∴∠ABD+∠BDC=180°,
又∵BE、DE分別平分∠ABD、∠BDC,
∴∠ABE=$\frac{1}{2}$∠ABD,∠CDE=$\frac{1}{2}$∠BDC,
∵AB∥CD∥EF,
∴∠ABE=∠BEF,∠FED=∠CDE,
∴∠BED=∠BEF+∠FED=∠ABE+∠CDE=$\frac{1}{2}$∠ABD+$\frac{1}{2}$∠BDC
=$\frac{1}{2}$(∠ABD+∠BDC)
=$\frac{1}{2}$×180°=90°,
∴BE⊥ED.
點(diǎn)評 本題考查了平行線的性質(zhì)和角平分線定義的應(yīng)用,能靈活運(yùn)用性質(zhì)進(jìn)行推理是解此題的關(guān)鍵,注意:兩直線平行,同旁內(nèi)角互補(bǔ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2016 | B. | -2016 | C. | $\frac{1}{2016}$ | D. | -$\frac{1}{2016}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 這個銳角的2倍 | B. | 這個銳角的余角 | C. | 這個銳角加上90° | D. | 這個銳本身 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1,2,3 | B. | 4,5,6 | C. | 6,8,9 | D. | 7,24,25 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,-2) | B. | (-2,0) | C. | (4,0) | D. | (0,-4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com