【題目】如圖,O為矩形ABCD內(nèi)的一點,滿足OD=OC,若O點到邊AB的距離為d,到邊DC的距離為3d,且OB=2d,求該矩形對角線的長________

【答案】2d

【解析】∵OD=OC,∴O在CD的垂直平分線線上,∠ODC=∠OCD,

∵四邊形ABCD是矩形,∴AD=BC,∠ABC=∠ADC=∠BCD=90°,

∴∠ADC﹣∠ODC=∠BCD﹣∠OCD,

即∠ADO=∠BCO,

在△ADO和△BCO中, ,

∴△ADO≌△BCO(SAS),

∴OA=OB,

∴O在AB的垂直平分線上,

過O作MN⊥AB與N交CD于M,如圖所示:

則AN=BN,NM⊥CD,OM=3d,ON=d,

∴BC=MN=3d+d=4d,BN= = ,

∴AB=AN+BN=2d,

∴AC==2d,

故答案為:2d.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組利用數(shù)學(xué)活動課時間測量位于烈山山頂?shù)难椎鄣裣窀叨龋阎疑狡旅媾c水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進1620尺到達(dá)E點,在點E處測得雕像頂端A的仰角為60°,求雕像AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x=5是關(guān)于x的方程2x+3m﹣1=0的解,則m的值為(
A.0
B.﹣1
C.﹣2
D.﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點,BEAC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;CF=2AF;DF=DC;tanCAD=.其中正確的結(jié)論有( )

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4,1.5,0,﹣2四個數(shù)中,屬于正分?jǐn)?shù)的是( 。

A. 4 B. 1.5 C. 0 D. ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=x2﹣2x+3不動,將平面直角坐標(biāo)系xOy先沿水平方向向右平移一個單位,再沿鉛直方向向上平移三個單位,則原拋物線圖象的解析式應(yīng)變?yōu)椋?/span>
A.y=(x﹣2)2+3
B.y=x2﹣1
C.y=(x﹣2)2+5
D.y=x2+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】氫原子的半徑大約是0.000 0077m,將數(shù)據(jù)0.000 0077用科學(xué)記數(shù)法表示為(
A.0.77×105
B.0.77×106
C.7.7×105
D.7.7×106

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若多項式x2+kxy+4x﹣2xy+y2﹣1不含xy項,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且ADMND,BEMNE

1)求證:ADC≌△CEB;

2AD=1,BE=2,求△ABC的面積

查看答案和解析>>

同步練習(xí)冊答案