已知圓內(nèi)接△ABC中,AB=AC,圓心O到BC距離為6cm,圓的半徑為10cm,求腰AB的長(zhǎng).

解:分圓心在內(nèi)接三角形內(nèi)和在內(nèi)接三角形外兩種情況討論,
如圖一,假若∠A是銳角,△ABC是銳角三角形,
連接OA,
∵OD=6cm,OB=10cm,
∴BD=8cm,
∵OD⊥BC,根據(jù)垂徑定理和等腰三角形的性質(zhì)可得,AD⊥BC,
∴AD=10+6=16cm,
∴AB==8cm;
如圖二,若∠A是鈍角,則△ABC是鈍角三角形,
和圖一解法一樣,只是AD=10-6=4cm,
∴AB==4cm.
分析:可根據(jù)勾股定理先求得BD的值,再根據(jù)勾股定理可求得AB的值.注意:圓心在內(nèi)接三角形內(nèi)時(shí),AD=16cm;圓心在內(nèi)接三角形外時(shí),AD=4cm.
點(diǎn)評(píng):此題主要考查了垂徑定理和勾股定理,注意分圓心在內(nèi)接三角形內(nèi)和在內(nèi)接三角形外兩種情況討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知圓內(nèi)接△ABC中,AB=AC,圓心O到BC距離為6cm,圓的半徑為10cm,求腰AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知圓內(nèi)接△ABC中,AB>AC,D為
BAC
的中點(diǎn),DE⊥AB于E,求證:BD2-AD2=AB•AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:新課標(biāo)九年級(jí)數(shù)學(xué)競(jìng)賽培訓(xùn)第18講:圓的基本性質(zhì)(解析版) 題型:解答題

如圖,已知圓內(nèi)接△ABC中,AB>AC,D為的中點(diǎn),DE⊥AB于E,求證:BD2-AD2=AB•AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《24.1.1 圓及垂徑定理》2009年同步練習(xí)(解析版) 題型:解答題

已知圓內(nèi)接△ABC中,AB=AC,圓心O到BC距離為6cm,圓的半徑為10cm,求腰AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案