如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,用它可以證明勾股定理,思路是:大正方形的面積有兩種求法,一種是等于c2,另一種是等于四個直角三角形與一個小正方形的面積之和,即
1
2
ab×4+(b-a)2
,從而得到等式c2=
1
2
ab×4+(b-a)2
,化簡便得結(jié)論a2+b2=c2.這里用兩種求法來表示同一個量從而得到等式或方程的方法,我們稱之為“雙求法”.現(xiàn)在,請你用“雙求法”解決下面兩個問題
(1)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=3,BC=4,求CD的長度.
(2)如圖3,在△ABC中,AD是BC邊上的高,AB=4,AC=5,BC=6,設BD=x,求x的值.精英家教網(wǎng)
分析:(1)先根據(jù)勾股定理先求出AB,再根據(jù)“雙求法”求出CD的長度;
(2)運用兩個直角三角形根據(jù)勾股定理表示出AD,德關(guān)于x的方程求解.
解答:精英家教網(wǎng)解:(1)在Rt△ABC中AB=
32+42
=5
…(2分)
由面積的兩種算法可得:
1
2
×3×4=
1
2
×5×CD
…(4分)
解得:CD=
12
5
…(5分)

(2)在Rt△ABD中AD2=42-x2=16-x2…(6分)
在Rt△ADC中AD2=52-(6-x)2=-11+12x-x2…(8分)
所以16-x2=-11+12x-x2…(9分)
解得x=
27
12
…(10分)
點評:此題考查的知識點是勾股定理的應用,關(guān)鍵是運用勾股定理求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長度之間關(guān)系的有關(guān)問題,這種方法稱為等面積法,這是一種重要的數(shù)學方法.請你用等面積法來探究下列兩個問題:
(1)如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,請你用它來驗證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=4,BC=3,求CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年廣東佛山南海鹽步中學初二上周質(zhì)量數(shù)學試卷(帶解析) 題型:解答題

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長度之間關(guān)系的有關(guān)問題這種方法稱為等面積法,這是一種重要的數(shù)學方法.請你用等面積法來探究下列兩個問題:

(1)如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,請你用它來驗證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC= 4,BC=3,求CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年廣東佛山南海鹽步中學初二上周質(zhì)量數(shù)學試卷(解析版) 題型:解答題

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長度之間關(guān)系的有關(guān)問題這種方法稱為等面積法,這是一種重要的數(shù)學方法.請你用等面積法來探究下列兩個問題:

(1)如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,請你用它來驗證勾股定理;

(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC= 4,BC=3,求CD的長度.

 

查看答案和解析>>

科目:初中數(shù)學 來源:廣東省期末題 題型:解答題

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長度之間關(guān)系的有關(guān)問題,這種方法稱為等面積法,這是一種重要的數(shù)學方法.請你用等面積法來探究下列兩個問題:(1)如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,請你用它來驗證勾股定理;(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=4,BC=3,求CD的長度.

查看答案和解析>>

同步練習冊答案