【題目】(6分)如圖,菱形ABCD中,對角線AC、BD交于O點,DEAC,CEBD.

(1)求證:四邊形OCED為矩形;

(2)過點O作OFBC,垂足為F,若AC=16,BD=12,則OF=  

【答案】(1)見解析;(24.8

【解析】試題分析:(1)先證明四邊形OCED是平行四邊形,再由菱形的性質(zhì)得出對角線互相垂直,得出∠COD=90°,即可得出結(jié)論;

2)由菱形的性質(zhì)求出OC=AC=8,OB=BD=6,由勾股定理求出BC,再由△BOC面積的計算方法求出OF即可.

1)證明:∵DE∥AC,CE∥BD,

四邊形OCED是平行四邊形,

四邊形ABCD是菱形,

∴AC⊥BD,

∴∠COD=90°

四邊形OCED為矩形;

2)解:四邊形ABCD是菱形,

∴AC⊥BD,OC=AC=8OB=BD=6,

由勾股定理得:BC==10,

∵△BOC的面積=BCOF=OBOC,

∴OF==4.8

故答案為:4.8

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD的周長是18,三角形ABC的周長是14,則對角線AC的長是_____________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個等腰三角形的兩邊長分別是3cm和7cm,它的周長是____cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是(

ACB=CD BBAC=DAC CBCA=DCA DB=D=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:矩形ABCD的兩邊AB,AD的長是關(guān)于x的方程x2﹣mx+=0的兩個實數(shù)根.

(1)當m為何值時,四邊形ABCD是正方形?求出這時正方形的邊長;

(2)若AB的長為2,那么矩形ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)定理是命題(”,下同).

如果ab=0,那么a=0”____命題

如果a=0,那么ab=0” ____命題

(2)“如果(a-1)(a-2)=0,那么a=2”是假命題反例是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠BAC的角平分線與BC的垂直平分線DG交于點D,DE⊥ABDF⊥AC,垂足分別為E,F

求證:BE=CF;

AF=5,BC=6,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正數(shù)的平方根是2a-1與-a+2,求a和這個正數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在扇形統(tǒng)計圖中,如果A部分扇面的面積是B部分扇面面積的2倍,則A部分扇面所對的圓心角是B部分扇面所對圓心角的( 。

A. 2 B. 1倍到2倍之間 C. 1.5 D. 無法計算

查看答案和解析>>

同步練習冊答案