【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A(2,1).
(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)A、O、B三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(3)在(2)所求的拋物線上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) B(-1.2);(2) y=;(3)見(jiàn)解析.
【解析】
(1)過(guò)A作AC⊥x軸于點(diǎn)C,過(guò)B作BD⊥x軸于點(diǎn)D,則可證明△ACO≌△ODB,則可求得OD和BD的長(zhǎng),可求得B點(diǎn)坐標(biāo);
(2)根據(jù)A、B、O三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;
(3)由四邊形ABOP可知點(diǎn)P在線段AO的下方,過(guò)P作PE∥y軸交線段OA于點(diǎn)E,可求得直線OA解析式,設(shè)出P點(diǎn)坐標(biāo),則可表示出E點(diǎn)坐標(biāo),可表示出PE的長(zhǎng),進(jìn)一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時(shí)P點(diǎn)的坐標(biāo).
(1)如圖1,過(guò)A作AC⊥x軸于點(diǎn)C,過(guò)B作BD⊥x軸于點(diǎn)D,
∵△AOB為等腰三角形,
∴AO=BO,
∵∠AOB=90°,
∴∠AOC+∠DOB=∠DOB+∠OBD=90°,
∴∠AOC=∠OBD,
在△ACO和△ODB中
∴△ACO≌△ODB(AAS),
∵A(2,1),
∴OD=AC=1,BD=OC=2,
∴B(-1,2);
(2)∵拋物線過(guò)O點(diǎn),
∴可設(shè)拋物線解析式為y=ax2+bx,
把A、B兩點(diǎn)坐標(biāo)代入可得,解得,
∴經(jīng)過(guò)A、B、O原點(diǎn)的拋物線解析式為y=x2-x;
(3)∵四邊形ABOP,
∴可知點(diǎn)P在線段OA的下方,
過(guò)P作PE∥y軸交AO于點(diǎn)E,如圖2,
設(shè)直線AO解析式為y=kx,
∵A(2,1),
∴k=,
∴直線AO解析式為y=x,
設(shè)P點(diǎn)坐標(biāo)為(t,t2-t),則E(t,t),
∴PE=t-(t2-t)=-t2+t=-(t-1)2+,
∴S△AOP=PE×2=PE═-(t-1)2+,
由A(2,1)可求得OA=OB=,
∴S△AOB=AOBO=,
∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,
∵-<0,
∴當(dāng)t=1時(shí),四邊形ABOP的面積最大,此時(shí)P點(diǎn)坐標(biāo)為(1,-),
綜上可知存在使四邊形ABOP的面積最大的點(diǎn)P,其坐標(biāo)為(1,-).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE是O的直徑,點(diǎn)A和點(diǎn)D是0上的兩點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BE延長(zhǎng)線于點(diǎn)C.
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AC=4,CE=2,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游樂(lè)園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.
(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?
(3)經(jīng)檢修評(píng)估,游樂(lè)園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,點(diǎn)D、E分別在邊BC、AC上,點(diǎn)F在DE的延長(zhǎng)線上,AD=AF,AECE=DEEF.
(1)求證:△ADE∽△ACD;
(2)如果AEBD=EFAF,求證:AB=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)y=(x<0)的圖像與直線y=-x交于A點(diǎn),將線段OA繞O點(diǎn)順時(shí)針旋轉(zhuǎn)30°,交函數(shù)y=(x<0)的圖像于B點(diǎn),得到線段OB,若線段AB=3-,則k= _______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的周長(zhǎng)為21,底邊BC=5,AB的垂直平分線DE交AB于點(diǎn)D,交AC于點(diǎn)E,則△BEC的周長(zhǎng)為( )
A. 13 B. 14 C. 15 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個(gè)結(jié)論:
①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒(méi)有實(shí)數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正△ABC的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿的方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為x(秒),,則y關(guān)于x的函數(shù)的圖像大致為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com