精英家教網 > 初中數學 > 題目詳情

如圖,直線軸、軸分別交于A、B兩點,把△OAB繞點O順時針旋轉90°得到△OCD.

⑴在圖中畫出△OCD;

⑵求經過A、B、D三點的拋物線的解析式;

⑶點P在拋物線對稱軸上運動

①當直線CP把△OCD分成面積相等的兩部分時,試求出點P的坐標;

②是否存在點P,使為直角三角形,若存在,請求出點的坐標;如果不存在,請

說明理由.

 

解:(1)畫圖見圖………1分

⑵由已知可知:

A(-2,0)、B(0,4)、C(0,2)、D(4,0)

設經過A、B、D的拋物線解析式為

則有:  ①

          ②

 ③  

解①②③得:,,………2分

 

∴拋物線的解析式為:………3分

 

⑶①若存在點P滿足條件,則直線CP必經過OD的中點E(2,0)

易知經過C、E的直線為

于是點P的坐標為P(1,1)………5分

②點C(0,2)、D(4,0)、P(1,m)

,即,

解得

,…….7分

,即,解得…….8分

,即,解得…….9分

綜上所述,存在點使為直角三角形,,,,…….10分

解析:略

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(本題10分)如圖 ,直線軸的交點坐標為A(0,1),與軸的交點坐標為B(-3,0);P、Q分別是軸和直線AB上的一動

點,在運動過程中,始終保持QA=QP;△APQ沿
直線PQ翻折得到△CPQ,A點的對稱點是點C.
(1)求直線AB的解析式.
(2)是否存在點P,使得點C恰好落在直線AB
上?若存在,請求出點P的坐標;若不存在,
請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,直線l與x軸、y軸的正半軸分別交于A、B兩點,OA、OB的長分別是關于x的方程x2﹣14x+4(AB+2)=0的兩個根(OB>OA),P是直線l上A、B兩點之間的一動點(不與A、B重合),PQ∥OB交OA于點Q
【小題1】求tan∠BAO的值
【小題2】若SPAQ=S四邊形OQPB時,請確定點P在AB上的位置,并求出線段PQ的長;
【小題3】當點P在線段AB上運動時,在y軸上是否存在點M,使△MPQ為等腰直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2013屆浙江臨安於潛第一初級中學九年級上期末綜合考試數學試卷(一)(帶解析) 題型:解答題

(本題12分)
如圖,直線軸、軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點.連結FP,設動點P與動直線EF同時出發(fā),運動時間為t秒.

(1)當t=1秒時,求梯形OPFE的面積;
(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?
(3)設t的值分別取t1、t2時(t1≠t2),所對應的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.

查看答案和解析>>

科目:初中數學 來源:2012-2013學年浙江臨安於潛第一初級中學九年級上期末綜合考試數學試卷(一)(解析版) 題型:解答題

(本題12分)

如圖,直線軸、軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點.連結FP,設動點P與動直線EF同時出發(fā),運動時間為t秒.

(1)當t=1秒時,求梯形OPFE的面積;

(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?

(3)設t的值分別取t1、t2時(t1≠t2),所對應的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.

 

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業(yè)升學考試(福建漳州卷)數學 題型:解答題

(11·漳州)(滿分14分)如圖1,拋物線ymx2-11mx+24m (m<0) 與x軸交于BC兩點(點B在點C的左側),拋物線另有一點A在第一象限內,且∠BAC=90°.

(1)填空:OB_   ▲   ,OC_   ▲   ;

(2)連接OA,將△OAC沿x軸翻折后得△ODC,當四邊形OACD是菱形時,求此時拋物線的解析式;

(3)如圖2,設垂直于x軸的直線lxn與(2)中所求的拋物線交于點M,與CD交于點N,若直線l 沿x軸方向左右平移,且交點M始終位于拋物線上A、C兩點之間時,試探究:當n為何值時,四邊形AMCN的面積取得最大值,并求出這個最大值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案