如圖,點(diǎn)M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.求證:∠BQM=60°.

證明:∵BM=CN,BC=AC,∴CM=AN,
又∵AB=AC,∠BAN=∠ACM,
∴△AMC≌△BNA,則∠BNA=∠AMC,
∵∠MAN+∠ANB+∠AQN=180°
∠MAN+∠AMC+∠ACB=180°,
∴∠AQN=∠ACB,
∵∠BQM=∠AQN,
∴∠BQM=∠AQN=∠ACB=60°.
分析:根據(jù)BM=CN可得CM=AN,易證△AMC≌△BNA,得∠BNA=∠AMC,根據(jù)內(nèi)角和為180°即可求得∠BQM=∠ACB=60°,即可解題.
點(diǎn)評(píng):本題考查了全等三角形的證明和全等三角形對(duì)應(yīng)角相等的性質(zhì),考查了等邊三角形各內(nèi)角為60°的性質(zhì),本題中求證∠AQN=∠ACB是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)D、E分別在△ABC的邊上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,則AE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,B分別在一次函數(shù)y=x,y=8x的圖象上,其橫坐標(biāo)分別為a,b (a>0,b>0 ).若直線AB為一次函數(shù)y=kx+m的圖象,則當(dāng)
b
a
是整數(shù)時(shí),滿足條件的整數(shù)k的值共有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,點(diǎn)M、N分別在正三角形ABC的BC、CA邊上,且BM=CN,AM、BN交于點(diǎn)Q,求∠AQN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點(diǎn)D、E分別在∠BAC的邊上,連接DC、BE,若∠B=∠C,那么補(bǔ)充下列一個(gè)條件后,仍無法判定△ABE≌△ACD的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B分別在直線l1、l2上,過點(diǎn)A作到l2的距離AM,過點(diǎn)B作直線l3∥l1

查看答案和解析>>

同步練習(xí)冊(cè)答案