隨著“六一”臨近,兒童禮品開(kāi)始熱銷,某廠每月固定生產(chǎn)甲、乙兩種禮品共100萬(wàn)件,甲禮品每件成本15元,乙禮品每件成本12元,現(xiàn)甲禮品每件售價(jià)22元,乙禮品每件售價(jià)18元,且都能全部售出。

(1)若某月銷售收入2000萬(wàn)元,則該月甲、乙禮品的產(chǎn)量分別是多少?

(2)如果每月投入的總成本不超過(guò)1380萬(wàn)元,應(yīng)怎樣安排甲、乙禮品的產(chǎn)量,可使所獲得的利潤(rùn)最大?

(3)該廠在銷售中發(fā)現(xiàn):甲禮品售價(jià)每提高1元,銷量會(huì)減少4萬(wàn)件,乙禮品售價(jià)不變,不管多少產(chǎn)量都能賣出。在(2)的條件下,為了獲得更大的利潤(rùn),該廠決定提高甲禮品的售價(jià),并重新調(diào)整甲、乙禮品的生產(chǎn)數(shù)量,問(wèn):提高甲禮品的售價(jià)多少元時(shí)可獲得最大利潤(rùn),最大利潤(rùn)為多少萬(wàn)元?

 

【答案】

(1)甲、乙禮品的產(chǎn)量分別是50萬(wàn)件,50萬(wàn)件(2)這時(shí)應(yīng)生產(chǎn)甲禮品60萬(wàn)件,乙禮品40萬(wàn)件(3)當(dāng)即提價(jià)甲禮品7元時(shí),可獲得最大利潤(rùn)856萬(wàn)元。

【解析】

試題分析:(1)設(shè)生產(chǎn)甲禮品萬(wàn)件,乙禮品萬(wàn)件,由題意得:

  解得:

答:甲、乙禮品的產(chǎn)量分別是50萬(wàn)件,50萬(wàn)件。

(2)設(shè)生產(chǎn)甲禮品萬(wàn)件,乙禮品萬(wàn)件,所獲得的利潤(rùn)為萬(wàn)元,

由題意得:    

增大而增大,   ∴當(dāng)萬(wàn)件時(shí),y有最大值660萬(wàn)元。

這時(shí)應(yīng)生產(chǎn)甲禮品60萬(wàn)件,乙禮品40萬(wàn)件.

(3)設(shè)提價(jià)甲禮品元,由題意得,

∴當(dāng)即提價(jià)甲禮品7元時(shí),可獲得最大利潤(rùn)856萬(wàn)元。

考點(diǎn):求最值

點(diǎn)評(píng):本題考查求最值,解答本題需要掌握二次函數(shù)的性質(zhì),會(huì)求二次函數(shù)的頂點(diǎn)式,通過(guò)頂點(diǎn)式來(lái)求其最值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•瑞安市模擬)隨著“六一”臨近,兒童禮品開(kāi)始熱銷,某廠每月固定生產(chǎn)甲、乙兩種禮品共100萬(wàn)件,甲禮品每件成本15元,乙禮品每件成本12元,現(xiàn)甲禮品每件售價(jià)22元,乙禮品每件售價(jià)18元,且都能全部售出.
(1)若某月銷售收入2000萬(wàn)元,則該月甲、乙禮品的產(chǎn)量分別是多少?
(2)如果每月投入的總成本不超過(guò)1380萬(wàn)元,應(yīng)怎樣安排甲、乙禮品的產(chǎn)量,可使所獲得的利潤(rùn)最大?
(3)該廠在銷售中發(fā)現(xiàn):甲禮品售價(jià)每提高1元,銷量會(huì)減少4萬(wàn)件,乙禮品售價(jià)不變,不管多少產(chǎn)量都能賣出.在(2)的條件下,為了獲得更大的利潤(rùn),該廠決定提高甲禮品的售價(jià),并重新調(diào)整甲、乙禮品的生產(chǎn)數(shù)量,問(wèn):提高甲禮品的售價(jià)多少元時(shí)可獲得最大利潤(rùn),最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省瑞安市初中畢業(yè)生學(xué)業(yè)考試適應(yīng)性測(cè)試數(shù)學(xué)試卷(帶解析) 題型:解答題

隨著“六一”臨近,兒童禮品開(kāi)始熱銷,某廠每月固定生產(chǎn)甲、乙兩種禮品共100萬(wàn)件,甲禮品每件成本15元,乙禮品每件成本12元,現(xiàn)甲禮品每件售價(jià)22元,乙禮品每件售價(jià)18元,且都能全部售出。
(1)若某月銷售收入2000萬(wàn)元,則該月甲、乙禮品的產(chǎn)量分別是多少?
(2)如果每月投入的總成本不超過(guò)1380萬(wàn)元,應(yīng)怎樣安排甲、乙禮品的產(chǎn)量,可使所獲得的利潤(rùn)最大?
(3)該廠在銷售中發(fā)現(xiàn):甲禮品售價(jià)每提高1元,銷量會(huì)減少4萬(wàn)件,乙禮品售價(jià)不變,不管多少產(chǎn)量都能賣出。在(2)的條件下,為了獲得更大的利潤(rùn),該廠決定提高甲禮品的售價(jià),并重新調(diào)整甲、乙禮品的生產(chǎn)數(shù)量,問(wèn):提高甲禮品的售價(jià)多少元時(shí)可獲得最大利潤(rùn),最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆河南省鄭州市第四中學(xué)九年級(jí)中招模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

隨著“六一”臨近,兒童禮品開(kāi)始熱銷,某廠每月固定生產(chǎn)甲、乙兩種禮品共100萬(wàn)件,甲禮品每件成本15元,乙禮品每件成本12元,現(xiàn)甲禮品每件售價(jià)22元,乙禮品每件售價(jià)18元,且都能全部售出。
(1)若某月銷售收入2000萬(wàn)元,則該月甲、乙禮品的產(chǎn)量分別是多少?
(2)如果每月投入的總成本不超過(guò)1380萬(wàn)元,應(yīng)怎樣安排甲、乙禮品的產(chǎn)量,可使所獲得的利潤(rùn)最大?
(3)該廠在銷售中發(fā)現(xiàn):甲禮品售價(jià)每提高1元,銷量會(huì)減少4萬(wàn)件,乙禮品售價(jià)不變,不管多少產(chǎn)量都能賣出。在(2)的條件下,為了獲得更大的利潤(rùn),該廠決定提高甲禮品的售價(jià),并重新調(diào)整甲、乙禮品的生產(chǎn)數(shù)量,問(wèn):提高甲禮品的售價(jià)多少元時(shí)可獲得最大利潤(rùn),最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省瑞安市畢業(yè)生學(xué)業(yè)考試適應(yīng)性測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

隨著“六一”臨近,兒童禮品開(kāi)始熱銷,某廠每月固定生產(chǎn)甲、乙兩種禮品共100萬(wàn)件,甲禮品每件成本15元,乙禮品每件成本12元,現(xiàn)甲禮品每件售價(jià)22元,乙禮品每件售價(jià)18元,且都能全部售出。

(1)若某月銷售收入2000萬(wàn)元,則該月甲、乙禮品的產(chǎn)量分別是多少?

(2)如果每月投入的總成本不超過(guò)1380萬(wàn)元,應(yīng)怎樣安排甲、乙禮品的產(chǎn)量,可使所獲得的利潤(rùn)最大?

(3)該廠在銷售中發(fā)現(xiàn):甲禮品售價(jià)每提高1元,銷量會(huì)減少4萬(wàn)件,乙禮品售價(jià)不變,不管多少產(chǎn)量都能賣出。在(2)的條件下,為了獲得更大的利潤(rùn),該廠決定提高甲禮品的售價(jià),并重新調(diào)整甲、乙禮品的生產(chǎn)數(shù)量,問(wèn):提高甲禮品的售價(jià)多少元時(shí)可獲得最大利潤(rùn),最大利潤(rùn)為多少萬(wàn)元?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案