【題目】如圖所示,在△ABC中,E,F(xiàn)分別在AB,AC上,則下列各式不能成立的是(

A.∠BOC=∠2+∠6+∠A
B.∠2=∠5-∠A
C.∠5=∠1+∠4
D.∠1=∠ABC+∠4

【答案】B
【解析】A項,∵∠BOC是△BEO的外角,∴∠BOC=∠2+∠BEO;∵∠BEO是△AEC的外角,∴∠BEO=∠A+∠C,∴∠BOC=∠2+∠6+∠A.
B項,∵∠5是△ABF的外角,∴∠5=∠2+∠A,∠2=∠5-∠A.
C項錯誤.
D項,∵∠1是△BCE的外角,∴∠1=∠ABC+∠4.
【考點精析】解答此題的關(guān)鍵在于理解三角形的外角的相關(guān)知識,掌握三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:

銷售量n(件)

n=50﹣x

銷售單價m(元/件)

當(dāng)1≤x≤20時,m=20+x

當(dāng)21≤x≤30時,m=10+

(1)請計算第幾天該商品單價為25元/件?

(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;

(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護(hù)環(huán)境,從我做起”為主題的演講比賽,賽后組委會整理參賽同學(xué)的成績,并制作了如圖不完整的頻數(shù)分布表和頻數(shù)分布直方圖

請根據(jù)圖表提供的信息,解答下列問題:

(1)表中的a= ,b= ;請補全頻數(shù)分布直方圖;

(2)若用扇形統(tǒng)計圖來描述成績分布情況,則分?jǐn)?shù)段70≤x<80對應(yīng)扇形的圓心角的度數(shù)是 ;

(3)競賽成績不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué).學(xué)校從這4名同學(xué)中隨機抽2名同學(xué)接受電視臺記者采訪,則正好抽到一名男同學(xué)和一名女同學(xué)的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知k>0,且關(guān)于x的方程3kx2+12x+k+1=0有兩個相等的實數(shù)根,那么k的值等于.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】海靜中學(xué)開展以“我最喜愛的職業(yè)”為主題的調(diào)查活動,圍繞“在演員、教師、醫(yī)生、律師、公務(wù)員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內(nèi)隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息回答下列問題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)求在被調(diào)查的學(xué)生中,最喜愛教師職業(yè)的人數(shù),并補全條形統(tǒng)計圖;

(3)若海靜中學(xué)共有1500名學(xué)生,請你估計該中學(xué)最喜愛律師職業(yè)的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形的腰長為10,底邊長為12,則底邊上的高為(

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列各式的值:
(1)x2﹣25=0
(2)x3﹣3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】具備下列條件的△ABC中,不是直角三角形的是( 。
A.∠A+∠B=∠C
B.∠A= ∠B= ∠C
C.∠A:∠B:∠C=1:2:3
D.∠A=∠B=3∠C

查看答案和解析>>

同步練習(xí)冊答案