【題目】如圖,點(diǎn)在雙曲線上,垂直軸,垂足為,點(diǎn)上,平行于軸交雙曲線于點(diǎn),直線軸交于點(diǎn),已知,點(diǎn)的坐標(biāo)為

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)直接寫(xiě)出反比例函數(shù)值大于一次函數(shù)值時(shí)自變量的值范圍.

【答案】1;y=x-1;(2

【解析】

(1)由點(diǎn)C的坐標(biāo)為(3,2)AC=2,而ACAD=13,得到AD=6,則D點(diǎn)坐標(biāo)為(36),然后利用待定系數(shù)法確定雙曲線的解析式,把y=2代入求得B的坐標(biāo),然后根據(jù)待定系數(shù)法即可求得直線AB的解析式;
(2)解析式聯(lián)立,解方程組求得另一個(gè)交點(diǎn)坐標(biāo),然后利用圖象即可求得.

(1)∵點(diǎn)的坐標(biāo)為,

,

,

∴點(diǎn)的坐標(biāo)為,

設(shè)該雙曲線的解析式為

,

∴該雙曲線的解析式為;

設(shè)直線AB的解析式為,
CB平行于x軸交曲線于點(diǎn)B,
B點(diǎn)縱坐標(biāo)為2
代入求得,

B(92),

A(30)B(9,2)代入y=kx+b得,

3k+b=09k+b=2,

解得:k=b=-1,
∴直線AB的解析式為y=x-1;

(2)

∴反比例函數(shù)與一次函數(shù)的另一個(gè)交點(diǎn)為(-6,-3),

∴根據(jù)圖象,當(dāng)x-60x9時(shí),反比例函數(shù)的圖象在一次函數(shù)值的上方,

∴反比例函數(shù)值大于一次函數(shù)值時(shí)自變量的取值范圍x-60x9

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,BC在⊙O上,ABOC

(1)求證:∠ACB+BOC90°

(2)若⊙O的半徑為5,AC8,求BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸于點(diǎn)和點(diǎn),交軸于點(diǎn).已知點(diǎn)的坐標(biāo)為,點(diǎn)為第二象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),連接、、

1)求這個(gè)拋物線的表達(dá)式.

2)當(dāng)四邊形面積等于4時(shí),求點(diǎn)的坐標(biāo).

3)①點(diǎn)在平面內(nèi),當(dāng)是以為斜邊的等腰直角三角形時(shí),直接寫(xiě)出滿(mǎn)足條件的所有點(diǎn)的坐標(biāo);

②在①的條件下,點(diǎn)在拋物線對(duì)稱(chēng)軸上,當(dāng)時(shí),直接寫(xiě)出滿(mǎn)足條件的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是銳角ABC的外接圓,FH是⊙O的切線,切點(diǎn)為F,FHBC,連結(jié)AFBCE,∠ABC的平分線BDAFD,連結(jié)BF.下列結(jié)論:①AF平分∠BAC;②點(diǎn)FBDC的外心;③;④若點(diǎn)M,N分別是ABAF上的動(dòng)點(diǎn),則BN+MN的最小值是ABsinBAC.其中一定正確的是_____(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,、是斜邊上兩點(diǎn),且,將順時(shí)針旋轉(zhuǎn)后,得到,連接,則下列結(jié)論不正確的是(

A.B.為等腰直角三角形

C.平分D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線為正整數(shù),且)與軸的交點(diǎn)為,,當(dāng)時(shí),第1條拋物線軸的交點(diǎn)為,其他依次類(lèi)推.

1)求,的值及拋物線的解析式;

2)拋物線的頂點(diǎn)的坐標(biāo)為( , );依次類(lèi)推,第條拋物線的頂點(diǎn)的坐標(biāo)為( , );所有拋物線的頂點(diǎn)坐標(biāo)滿(mǎn)足的函數(shù)關(guān)系式是

3)探究下列結(jié)論:

①是否存在拋物線,使得為等腰直角三角形?若存在,請(qǐng)求出拋物線的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由;

②若直線與拋物線分別交于則線段,…則線段,…的長(zhǎng)有何規(guī)律?請(qǐng)用含的代數(shù)式表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果函數(shù)C)的圖象經(jīng)過(guò)點(diǎn)(mn)、(-m,-n),那么我們稱(chēng)函數(shù)C為對(duì)稱(chēng)點(diǎn)函數(shù),這對(duì)點(diǎn)叫做對(duì)稱(chēng)點(diǎn)函數(shù)的友好點(diǎn).

例如:函數(shù)經(jīng)過(guò)點(diǎn)(1,2)、(-1,-2),則函數(shù)是對(duì)稱(chēng)點(diǎn)函數(shù),點(diǎn)(12)、(-1-2)叫做對(duì)稱(chēng)點(diǎn)函數(shù)的友好點(diǎn).

1)填空:對(duì)稱(chēng)點(diǎn)函數(shù)一個(gè)友好點(diǎn)是(3,3),則b= c= ;

2)對(duì)稱(chēng)點(diǎn)函數(shù)一個(gè)友好點(diǎn)是(2b,n),當(dāng)2bx≤2時(shí),此函數(shù)的最大值為,最小值為,且=4,求b的值;

3)對(duì)稱(chēng)點(diǎn)函數(shù))的友好點(diǎn)是M、N(點(diǎn)M在點(diǎn)N的上方),函數(shù)圖象與y軸交于點(diǎn)A.把線段AM繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到它的對(duì)應(yīng)線段A′M′.若線段A′M′與該函數(shù)的圖象有且只有一個(gè)公共點(diǎn)時(shí),結(jié)合函數(shù)圖象,直接寫(xiě)出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自主學(xué)習(xí),請(qǐng)閱讀下列解題過(guò)程.

例:用圖象法解一元二次不等式:

解:設(shè),則的二次函數(shù).

拋物線開(kāi)口向上.

當(dāng)時(shí),,解得

由此得拋物線的大致圖象如圖所示.

觀察函數(shù)圖象可知:當(dāng)時(shí),

的解集是:

通過(guò)對(duì)上述解題過(guò)程的學(xué)習(xí),按其解題的思路和方法解答下列問(wèn)題:

1)上述解題過(guò)程中,滲透了下列數(shù)學(xué)思想中的    .(只填序號(hào))①轉(zhuǎn)化思想,②分類(lèi)討論思想,③數(shù)形結(jié)合思想

2)觀察圖象,直接寫(xiě)出一元二次不等式:的解集是 ;

3)仿照上例,用圖象法解一元二次不等式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解全校學(xué)生對(duì)電視節(jié)目的喜愛(ài)情況(新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)這次被調(diào)查的學(xué)生共有多少人?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂(lè)節(jié)目的有多少人?

(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)

查看答案和解析>>

同步練習(xí)冊(cè)答案