【題目】如圖,在△ABC中,AD是高,E、F分別是AB、AC的中點(diǎn).
(1)AB=6,AC=4,求四邊形AEDF的周長;
(2)EF與AD有怎樣的位置關(guān)系?證明你的結(jié)論.
【答案】(1)10;(2)EF垂直平分AD.
【解析】
(1)根據(jù)線段中點(diǎn)的性質(zhì)、直角三角形的性質(zhì)計算;
(2)根據(jù)線段垂直平分線的判定定理得到E、F在線段AD的垂直平分線上,得到答案.
解:(1)∵E、F分別是AB、AC的中點(diǎn),
∴AE=AB=3,AF=AC=2,
∵AD是高,E、F分別是AB、AC的中點(diǎn),
∴DE=AB=3,DF=AC=2,
∴四邊形AEDF的周長=AE+ED+DF+FA=10;
(2)EF垂直平分AD.
證明:∵AD是△ABC的高,
∴∠ADB=∠ADC=90°,
∵E是AB的中點(diǎn),
∴DE=AE, 同理:DF=AF,
∴E、F在線段AD的垂直平分線上,
∴EF垂直平分AD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個圓柱形玻璃杯高,底面周長為,有一只螞蟻在一側(cè)距下底的外側(cè)點(diǎn),與點(diǎn)正對的容器內(nèi)側(cè)距下底的點(diǎn)處有一飯粒,螞蟻想吃處的飯粒,要從杯子的外側(cè)爬到杯子的內(nèi)側(cè),杯子的厚度忽略不計,則至少需要爬________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,(1)寫出△ABC的各頂點(diǎn)坐標(biāo);
(2)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(3)寫出△ABC關(guān)于x軸對稱的三角形的各頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列帶有坐標(biāo)系的網(wǎng)格中,△ABC的頂點(diǎn)都在邊長為1的小正方形的頂點(diǎn)上
(1) 直接寫出坐標(biāo):A__________,B__________
(2) 畫出△ABC關(guān)于y軸的對稱的△DEC(點(diǎn)D與點(diǎn)A對應(yīng))
(3) 用無刻度的直尺,運(yùn)用全等的知識作出△ABC的高線BF(保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠A=36°,BD平分∠ABC交AC于點(diǎn)D.
(1)求證:BD=BC;
(2)寫出圖中所有的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.
(1)寫出三角形③的頂點(diǎn)坐標(biāo).
(2)通過平移由三角形③能得到三角形④嗎?
(3)根據(jù)對稱性由三角形③可得三角形①,②,它們的頂點(diǎn)坐標(biāo)各是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的四個圖案中,既可用旋轉(zhuǎn)來分析整個圖案的形成過程,又可用軸對稱來分析整個圖案的形成過程的圖案有( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點(diǎn)E,使CE=2,連接DE,動點(diǎn)P從點(diǎn)B出發(fā),以每秒2個單位的速度沿BC-CD-DA向終點(diǎn)A運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為秒,當(dāng)的值為_____秒時,△ABP和△DCE全等.
A.1B.1或3C.1或7D.3或7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ACB中,∠CAB的平分線與過BC邊垂直平分線DE交于E點(diǎn),EF⊥AB,垂足是F,EG⊥AC,垂足是G.
(1)求證:BF=CG;
(2)若AB=a,AC=b(a>b),求BF長(用a、b表示BF長).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com