已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是(   )
A.a(chǎn)>0B.當(dāng)x>1時,y隨x的增大而增大
C.c<0D.3是方程ax2+bx+c=0的一個根
D.

試題分析:根據(jù)拋物線的開口方向可得a<0,根據(jù)拋物線對稱軸可得方程ax2+bx+c=0的根為x=-1,x=3;根據(jù)圖象可得x=1時,y>0;根據(jù)拋物線可直接得到x>1時,y隨x的增大而減;拋物線與y軸正半軸相交,因此c>0.
A、因為拋物線開口向下,因此a<0,故此選項錯誤;
B、當(dāng)x>1時,y隨x的增大而減小,故此選項錯誤;
C、拋物線與y軸正半軸相交,因此c>0,故此選項錯誤;
D、根據(jù)對稱軸為x=1,一個交點(diǎn)坐標(biāo)為(-1,0)可得另一個與x軸的交點(diǎn)坐標(biāo)為(3,0)因此3是方程ax2+bx+c=0的一個根,故此選項正確;
故選:D.
考點(diǎn): 1.二次函數(shù)圖象與系數(shù)的關(guān)系;2.二次函數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等邊△ABC的邊長為4,E是邊BC上的動點(diǎn),EH⊥AC于H,過E作EF∥AC,交線段AB于點(diǎn)F,在線段AC上取點(diǎn)P,使PE=EB.設(shè)EC=x(0<x≤2).

(1)請直接寫出圖中與線段EF相等的兩條線段(不再另外添加輔助線);
(2)Q是線段AC上的動點(diǎn),當(dāng)四邊形EFPQ是平行四邊形時,求平行四邊形EFPQ的面積(用含的代數(shù)式表示);
(3)當(dāng)(2)中 的平行四邊形EFPQ面積最大值時,以E為圓心,r為半徑作圓,根據(jù)⊙E與此時平行四邊形EFPQ四條邊交點(diǎn)的總個數(shù),求相應(yīng)的r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)的對稱軸為,則        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線向左平移2個單位,再向下平移1個單位后得到的拋物線解析式是             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過平移得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分的面積是(      )
A.2B.4C.8D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)

(1)證明:不論取何值,該函數(shù)圖象與軸總有兩個公共點(diǎn);
(2)若該函數(shù)的圖象與軸交于點(diǎn)(0,5),求出頂點(diǎn)坐標(biāo),并畫出該函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

長方體底面周長為50cm,高為10cm.則長方體體積y關(guān)于底面的一條邊長x的函數(shù)解析式是                          .其中x的取值范圍是                 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示,那么一次函數(shù)與反比例函數(shù)在同一坐標(biāo)系內(nèi)的圖象大致為(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:①當(dāng)x>2時,M=y2;②當(dāng)x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x=1.其中正確的有   (   )
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案