【題目】如圖,在平面直角坐標系中,的四個頂點分別為,,

1)作,使它與關于原點成中心對稱.

2)作的兩條對角線的交點關于軸的對稱點,點的坐標為_______

3)若將點向上平移個單位,使其落在內(nèi)部(不包括邊界),則的取值范圍是_______

【答案】1)答案見解析;(2;(3

【解析】

1)根據(jù)中心對稱的性質(zhì)找出對應點,畫出圖形即可;

2)根據(jù)關于y軸對稱點的特征找出O2的位置即可;

3)觀察圖形即可解決問題

解:(1A1B1C1D1即為所求;

2)點O2即為所求,點O2的坐標為(2,-2)

故答案為(2-2);

3)若將點O2向上平移a個單位,使其落在ABCD內(nèi)部(不包括邊上)則a的取值范圍是3a5


故答案為3a5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】探索與拓展應用,
已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時針排列),使∠DAF=60°,連接CF.
(1)如圖1,當點D在邊BC上時,求證:①BD=CF;②AC=CF+CD;

(2)如圖2,當點D在邊BC的延長線上且其他條件不變時,結論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關系,并說明理由;

(3)如圖3,當點D在邊CB的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一慢車和一快車沿相同路線從A地到B地,所行的路程與時間的圖象如圖所示,試根據(jù)圖象,回答下列問題:

(1)慢車比快車早出發(fā)______小時,快車追上慢車時行駛了_____千米,快車比慢車早______小時到達B地;

(2)求慢車、快車的速度;

(3)快車追上慢車需幾個小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABDCAE平分∠BAD,CDAE相交于點F,∠CFE=∠E.試說明ADBC.完成推理過程:

ABDC( )

∴∠1=∠CFE( )

AE平分∠BAD( ),

∴∠1 ( )

∵∠CFE=∠E( ),

∴∠2 (等量代換)

AD ( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請?zhí)羁,完成下面的證明,并注明理由.

如圖,,BE平分,DF平分

求證:

證明:∵,(已知)

.(_________

,(已知)

__________.(兩直線平行,同旁內(nèi)角互補)

.(_________

,(已知)

.(_________

同理,

________=

,(已知)

.(兩直線平行,內(nèi)錯角相等)

.(__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,多邊形OABCDE的頂點坐標分別是O(0,0)、A(0,6)、B(4,6)、C(4,4)、D(6,4),E(6,0),若直線L經(jīng)過點M(2,3),且將多邊形OABCDE分割成面積相等的兩部分,則直線L的函數(shù)表達式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四個均由十六個小正方形組成的正方形網(wǎng)格中,各有一個三角形ABC,那么這四個三角形中,不是直角三角形的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D是AB邊上一點,過點D作DEBC,交AC于E,點F是DE延長線上一點,聯(lián)結AF.

(1)如果,DE=6,求邊BC的長;

(2)如果FAE=B,F(xiàn)A=6,F(xiàn)E=4,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大小兩種貨車運送360臺機械設備,有三種運輸方案.

方案一:設備的用大貨車運送,其余用小貨車運送,需要貨車27輛.

方案二:設備的用大貨車運送,其余用小貨車運送,需要貨車28輛.

方案三:設備的用大貨車運送,其余用小貨車運送,需要貨車26輛.

1)每輛大、小貨車各可運送多少臺機械設備?

2)如果大貨車運費比小貨車高m%m>0),請你從中選擇一種方案,使得運費最低,并說明理由.

查看答案和解析>>

同步練習冊答案