【題目】直角三角板ABC的直角頂點C在直線DE上,CF平分∠BCD.
(1)在圖1中,若∠BCE=40°,求∠ACF的度數(shù);
(2)在圖1中,若∠BCE=α,直接寫出∠ACF的度數(shù)(用含α的式子表示);
(3)將圖1中的三角板ABC繞頂點C旋轉(zhuǎn)至圖2的位置,探究:寫出∠ACF與∠BCE的度數(shù)之間的關(guān)系,并說明理由.
【答案】(1)∠ACF=20°;(2)∠ACF=α;(3)∠ACF=∠BCE.理由見解析.
【解析】試題分析:(1)由∠ACB=90°,∠BCE=40°,可得∠ACD,∠BCD的度數(shù),再根據(jù)CF平分∠BCD,可得∠DCF的度數(shù),繼而可求得∠ACF=∠DCF﹣∠ACD=20°;
(2)由∠ACB=90°,∠BCE=α°,可得∠ACD=90°﹣α,∠BCD=180°﹣α,再根據(jù)CF平分∠BCD,從而可得∠DCF=90°﹣α,繼而可得∠ACF=α;
(3)由點C在DE上,可得∠BCD=180°﹣∠BCE,再根據(jù)CF平分∠BCD,可得∠BCF=90°-∠BCE,再根據(jù)∠ACB=90°,從而有∠ACF=∠BCE.
試題解析:(1)如圖1,∵∠ACB=90°,∠BCE=40°,
∴∠ACD=180°﹣90°﹣40°=50°,∠BCD=180°﹣40°=140°,
又CF平分∠BCD,
∴∠DCF=∠BCF=∠BCD=70°,
∴∠ACF=∠DCF﹣∠ACD=70°﹣50°=20°;
(2)如圖1,∵∠ACB=90°,∠BCE=α°,
∴∠ACD=180°﹣90°﹣α°=90°﹣α,∠BCD=180°﹣α,
又CF平分∠BCD,
∴∠DCF=∠BCF=∠BCD=90°﹣α,
∴∠ACF=90°﹣α﹣90°+α=α;
(3)∠ACF=∠BCE.理由如下:
如圖2,∵點C在DE上,
∴∠BCD=180°﹣∠BCE.
∵CF平分∠BCD,
∴∠BCF=∠BCD=(180°﹣∠BCE)=90°-∠BCE.
∵∠ACB=90°,
∴∠ACF=∠ACB﹣∠BCF=90°﹣(90°-∠BCE)=∠BCE.
即:∠ACF=∠BCE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請把下面證明過程補充完整:
已知:如圖,∠ADC=∠ABC,BE、DF分別平行∠ABC、∠ADC,且∠1=∠2.
求證:∠A=∠C.
證明:因為BE、DF分別平分∠ABC、∠ADC,( ).
所以∠1=∠ABC,∠3=∠ADC( ).
因為∠ABC=∠ADC(已知),
所以∠1=∠3( ),
因為∠1=∠2(已知),
所以∠2=∠3( ).
所以 ∥ ( ).
所以∠A+∠ =180°,∠C+∠ =180°( ).
所以∠A=∠C( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°,以AB為直徑的⊙O交AB于點D,點E為BC的中點,連接OD、DE.
⑴ 求證:OD⊥DE.
⑵ 若∠BAC=30°,AB=8,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,池塘邊有塊長為20m,寬為10m的長方形土地,現(xiàn)在將其余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用含x的式子表示:
(1)菜地的長a= m,菜地的寬b= m;菜地的周長C= m;
(2)求當(dāng)x=1m時,菜地的周長C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點P為∠AOB的角平分線上的一點,點D在邊OA上.愛動腦筋的小剛經(jīng)過仔細(xì)觀察后,進行如下操作:在邊OB上取一點E,使得PE=PD,這時他發(fā)現(xiàn)∠OEP與∠ODP之間有一定的數(shù)量關(guān)系,請你寫出∠OEP與∠ODP所有可能的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點M,N分別是正五邊形ABCDE的邊BC,CD上的點,且BM=CN,AM交BN于點P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由7個形狀、大小完全相同的正六邊形組成的網(wǎng)格,正六邊形的頂點稱為格點.已知每個正六邊形的邊長為1,△ABC的頂點都在格點上,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為直角邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AC=3,求BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com