【題目】如圖,是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(-24),B點(diǎn)坐標(biāo)為(-4,2)

(2)(1)的前提下,在第二象限內(nèi)的格點(diǎn)上找一點(diǎn)C,使點(diǎn)C與線(xiàn)段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),則C點(diǎn)的坐標(biāo)是;

(3)((2)中△ABC的周長(zhǎng)(結(jié)果保留根號(hào));

(4)畫(huà)出((2)中ABC關(guān)于y軸對(duì)稱(chēng)的A'B'C'.

【答案】(1)詳見(jiàn)解析;(2)(-1,1);(32+2;(4)詳見(jiàn)解析.

【解析】

1)把點(diǎn)A向右平移2個(gè)單位,向下平移4個(gè)單位就是原點(diǎn)的位置,建立相應(yīng)的平面直角坐標(biāo)系;
2)作線(xiàn)段AB的垂直平分線(xiàn),尋找滿(mǎn)足腰長(zhǎng)是無(wú)理數(shù)的點(diǎn)C即可;
3)利用格點(diǎn)三角形分別求出三邊的長(zhǎng)度,即可求出△ABC的周長(zhǎng);
4)分別找出A、B、C關(guān)于y軸的對(duì)稱(chēng)點(diǎn),順次連接即可.

解:(1)建立平面直角坐標(biāo)系如圖所示;

(2)(-1,1);

(3)AB==2,

BC=AC==,

△ABC的周長(zhǎng)=2+2

(4)畫(huà)出△A'B'C如圖所示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016廣西桂林市)已知任意三角形的三邊長(zhǎng),如何求三角形面積?

古希臘的幾何學(xué)家海倫解決了這個(gè)問(wèn)題,在他的著作《度量論》一書(shū)中給出了計(jì)算公式﹣﹣海倫公式S=(其中a,bc是三角形的三邊長(zhǎng),p=,S為三角形的面積),并給出了證明

例如:在ABC中,a=3,b=4c=5,那么它的面積可以這樣計(jì)算:

a=3,b=4c=5,p==6,S===6

事實(shí)上,對(duì)于已知三角形的三邊長(zhǎng)求三角形面積的問(wèn)題,還可用我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.

如圖,在ABC中,BC=5,AC=6AB=9

1)用海倫公式求ABC的面積;

2)求ABC的內(nèi)切圓半徑r

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩名同學(xué)在同一個(gè)學(xué)校上學(xué),B同學(xué)上學(xué)的路上經(jīng)過(guò)A同學(xué)家。A同學(xué)步行,B同學(xué)騎自行車(chē),某天,A,B兩名同學(xué)同時(shí)從家出發(fā)到學(xué)校,如圖,A表示A同學(xué)離B同學(xué)家的路程A(m)與行走時(shí)間(min)之間的函數(shù)關(guān)系圖象,B表示B同學(xué)離家的路程B(m)與行走時(shí)間(min)之間的函數(shù)關(guān)系圖象.

(1)A,B兩名同學(xué)的家相距________m.

(2)B同學(xué)走了一段路后,自行車(chē)發(fā)生故障,進(jìn)行修理,修理自行車(chē)所用的時(shí)間是 _____min.

(3)B同學(xué)出發(fā)后______min與A同學(xué)相遇.

(4)求出A同學(xué)離B同學(xué)家的路程A與時(shí)間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】類(lèi)比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整,原題:如圖1,在平行四邊形ABCD中,點(diǎn)EBC的中點(diǎn),點(diǎn)F是線(xiàn)段AE上一點(diǎn),BF的延長(zhǎng)線(xiàn)交射線(xiàn)CD于點(diǎn)G.=3,求的值.

(1)嘗試探究:

在圖1中,過(guò)點(diǎn)EEH∥ABBG于點(diǎn)H,則ABEH的數(shù)量關(guān)系是________,

CGEH的數(shù)量關(guān)系是________,

的值是________.

(2)類(lèi)比延伸:

如圖2,在原題條件下,若=m(m>0)的值是________(用含有m的代數(shù)式表示),試寫(xiě)出解答過(guò)程.

(3)拓展遷移:

如圖3,梯形ABCD中,DC∥AB,點(diǎn)EBC的延長(zhǎng)線(xiàn)上的一點(diǎn),AEBD相交于點(diǎn)F,若=a,=b(a>0,b>0)的值是________(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一次夏令營(yíng)活動(dòng)中,小明從營(yíng)地A出發(fā),沿北偏東60°方向走了m 到達(dá)點(diǎn)B,然后再沿北偏西30°方向走了50m到達(dá)目的地C

1)求A、C兩點(diǎn)之間的距離;

2)確定目的地C在營(yíng)地A的北偏東多少度方向。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)B6,0)的直線(xiàn)AB與直線(xiàn)OA相交于點(diǎn)A42),動(dòng)點(diǎn)N沿路線(xiàn)O→A→C運(yùn)動(dòng).

1)求直線(xiàn)AB的解析式.

2)求OAC的面積.

3)當(dāng)ONC的面積是OAC面積的時(shí),求出這時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三個(gè)頂點(diǎn)的坐標(biāo)分別為,,。

1)請(qǐng)畫(huà)出關(guān)于軸對(duì)稱(chēng)后得到的;

2)直接寫(xiě)出點(diǎn),點(diǎn),點(diǎn)的坐標(biāo);

3)在軸上尋找一個(gè)點(diǎn),使的周長(zhǎng)最小,并直接寫(xiě)出的周長(zhǎng)的最小值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)批發(fā)商銷(xiāo)售成本為20/千克的某產(chǎn)品,根據(jù)物價(jià)部門(mén)規(guī)定:該產(chǎn)品每千克售價(jià)不得超過(guò)90元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿(mǎn)足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:

售價(jià)x(元/千克)


50

60

70

80


銷(xiāo)售量y(千克)


100

90

80

70


1)求yx的函數(shù)關(guān)系式;

2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?

3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=x2﹣(m+1)x+m

(1)求證:拋物線(xiàn)與x軸一定有交點(diǎn);

(2)若拋物線(xiàn)與x軸交于A(x1,0),B(x2,0)兩點(diǎn),x1<0<x2,且,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案