如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F
(1)若CE=12,CF=5,求OC的長(zhǎng);
(2)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到何處且△ABC滿足什么條件時(shí),四邊形AECF是正方形?并說(shuō)明理由.

解:(1)∵OF是∠BCA的外角平分線,
∴∠OCF=∠FCD,
又∵M(jìn)N∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
∵M(jìn)N交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F
∴∠ECF=90°,
∵CE=12,CF=5,
∴EF==13,
∵CE是∠ACB的角平分線,
∴∠ACE=∠BCE,
又∵M(jìn)N∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∴CO是△ECF上的中線,
∴CO=EF=6.5;

(2)點(diǎn)O是AC的中點(diǎn)且∠ACB=90°,
理由:∵O為AC中點(diǎn),
∴OA=OC,
∵由(1)知OE=OF,
∴四邊形AECF為平行四邊形;
∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,
∴∠2+∠5=90°,即∠ECF=90°,
∴?AECF為矩形,
又∵AC⊥EF.
∴?AECF是正方形.
∴當(dāng)點(diǎn)O為AC中點(diǎn)且△ABC是以∠ACB為直角三角形時(shí),四邊形AECF是正方形.
分析:(1)利用角平分線的性質(zhì)以及平行線的性質(zhì)得出OE=OF,進(jìn)而利用勾股定理求出EF的長(zhǎng),即可得出CO的長(zhǎng);
(2)利用平行四邊形及矩形的性質(zhì)和判定證明四邊形AECF是正方形.
點(diǎn)評(píng):本題考查的是平行線、角平分線、正方形、平行四邊形的性質(zhì)與判定,涉及面較廣,在解答此類(lèi)題目時(shí)要注意角的運(yùn)用,一般通過(guò)角判定一些三角形,多邊形的形狀,需同學(xué)們熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,△ABC中,點(diǎn)D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,連接AE.已給的圖形中存在哪幾對(duì)相似三角形?請(qǐng)選擇一對(duì)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,點(diǎn)D、E分別為AB、AC的中點(diǎn),連接DE,線段BE、CD相交于點(diǎn)O,若OD=2,求OC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,點(diǎn)D為BC上一點(diǎn),且AB=AC=CD,則圖中∠1和∠2的關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,點(diǎn)D為AB邊上的一點(diǎn),點(diǎn)F為BC延長(zhǎng)線上一點(diǎn),DF交AC于點(diǎn)E.下列結(jié)論中不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,點(diǎn)D在BC上,點(diǎn)E在AB上,BD=BE,下列四個(gè)條件中,不能使△ADB≌△CEB的條件是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案