18、如圖,已知點D是△ABC的邊BC(不含點B,C)上的一點,DE∥AB交AC于點E,DF∥AC交AB于點F、要使四邊形AFDE是矩形,則在△ABC中要增加的一個條件是:
∠A=90°
分析:已知了DE∥AB,DF∥AC,那么四邊形AFDE是平行四邊形;若使四邊形AFDE是矩形,則這個四邊形中必有一角是直角,故∠A=90°.
解答:解:∵DE∥AB,DF∥AC,
∴四邊形AFDE是平行四邊形;
∴當∠A=90°時,四邊形AFDE是矩形;(有一個角是直角的平行四邊形是矩形)
故在△ABC中,應添加的條件為∠A=90°.
點評:本題考查的是矩形的判定方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點A是函數(shù)y=x與y=
4
x
的圖象在第一象限內(nèi)的交點,點B在x軸負半軸上,且OA=OB,則△AOB的面積為(  )
A、2
B、
2
C、2
2
D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,已知點C是AB上一點,△ACM、△CBN都是等邊三角形.
(1)說明AN=MB;
(2)將△ACM繞點C按逆時針旋轉(zhuǎn)180°,使A點落在CB上,請對照原題圖畫出符合要求的圖形;
(3)在(2)所得到的圖形中,結(jié)論“AN=BM”是否成立?若成立,請說明理由;若不成立,也請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:已知點C是線段AB上的點,△ACD與△BCE都是正三角形,F(xiàn)、G、精英家教網(wǎng)M、N分別是線段AC、CE、CD、CB的中點,
求證:FG=MN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點E是矩形ABCD的邊AB上一點,且EF⊥AC,EG⊥BD,AB=4cm,AD=3cm,則EF+EG=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點C是線段AD的中點,AC=15cm,BC=22cm,分別求線段AD和BD的長度.

查看答案和解析>>

同步練習冊答案