(2012•海陵區(qū)二模)如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為1,l2,l3之間的距離為2,則AC的長是( 。
分析:過A作AE⊥l3于E,過C作CF⊥l3于F,求出∠AEB=∠CFB,∠EAB=∠CBF,根據(jù)AAS證△AEB≌△BFC,推出AE=BF=2,BE=CF=3,由勾股定理求出AB和BC,再由勾股定理求出AC即可.
解答:解:
過A作AE⊥l3于E,過C作CF⊥l3于F,
則∠AEF=∠CFB=∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∠EAB+∠ABE=90°,
∴∠EAB=∠CBF,
∵在△AEB和△BFC中
∠EAB=∠CBF
∠AEB=∠CFB
AB=BC
,
∴△AEB≌△BFC(AAS),
∴AE=BF=2,BE=CF=2+1=3,
由勾股定理得:AB=BC=
22+32
=
13

由勾股定理得:AC=
(
13
)
2
+(
13
)
2
=
26
,
故選C.
點評:本題考查的知識點有兩平行線間的距離,全等三角形的性質(zhì)和判定,勾股定理,解此題的關(guān)鍵是構(gòu)造全等三角形求出AB和BC的長.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•海陵區(qū)二模)如果⊙O1的半徑是 5,⊙O2的半徑為8,O1O2=4,那么⊙O1與⊙O2的位置關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•海陵區(qū)二模)下列運算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•海陵區(qū)二模)如果|a|=2,那么a的值是
±2
±2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•海陵區(qū)二模)學習了“冪的運算”后,課本提出了一個問題;“根據(jù)負整數(shù)指數(shù)冪的意義,你能用同底數(shù)冪的乘法性質(zhì)(am•an=am+n,其中m、n是整數(shù))推導出同底數(shù)冪除法的性質(zhì)(am÷an=am-n,其中m、n是整數(shù))嗎?”.請你寫出簡單的推導過程:
am÷an=am
1
an
=am•a-n=am+(-n)=am-n
am÷an=am
1
an
=am•a-n=am+(-n)=am-n

查看答案和解析>>

同步練習冊答案