【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是8m,寬是2m,拋物線的最高點(diǎn)到路面的距離為6米.
(1)按如圖所示建立平面直角坐標(biāo)系,求表示該拋物線的函數(shù)表達(dá)式;
(2)一輛貨運(yùn)卡車高為4m,寬為2m,如果該隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
【答案】(1)y=﹣(x﹣4)2+6;(2)這輛貨車能安全通過.
【解析】試題分析:(1)根據(jù)題意可知頂點(diǎn)坐標(biāo)和點(diǎn)B坐標(biāo),設(shè)拋物線的函數(shù)表達(dá)式為頂點(diǎn)式,代入即可求出表達(dá)式;
(2)利用寬2m求出高為5m,所以可以通過.
試題解析:解:(1)如圖1,由題意得:最高點(diǎn)C(4,6),B(8,2),設(shè)拋物線的函數(shù)表達(dá)式:y=a(x﹣4)2+6,把(8,2)代入得:a(8﹣4)2+6=2,a=﹣,∴y=﹣(x﹣4)2+6;
(2)如圖2,當(dāng)DE=2時(shí),AD=AE﹣DE=4﹣2=2,當(dāng)x=2時(shí),y=﹣(2﹣4)2+6=5>4,∴這輛貨車能安全通過.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,與的平分線交于點(diǎn),過點(diǎn)作交于點(diǎn),交于點(diǎn),那么下列結(jié)論:①;②;③和都是等腰三角形;④的周長等于與的和,其中正確的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是正方形,M是AB延長線上一點(diǎn).直角三角尺的一條直角邊經(jīng)過點(diǎn)D,且直角頂點(diǎn)E在AB邊上滑動(dòng)(點(diǎn)E不與點(diǎn)A、B重合),另一直角邊與∠CBM的平分線BF相交于點(diǎn)F.
(1)如圖1,當(dāng)點(diǎn)E在AB邊得中點(diǎn)位置時(shí):
①通過測量DE、EF的長度,猜想DE與EF滿足的數(shù)量關(guān)系是 .
②連接點(diǎn)E與AD邊的中點(diǎn)N,猜想NE與BF滿足的數(shù)量關(guān)系是 ,請(qǐng)證明你的猜想.
(2)如圖2,當(dāng)點(diǎn)E在AB邊上的任意位置時(shí),猜想此時(shí)DE與EF有怎樣的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=12,點(diǎn)E是AD上的一點(diǎn),AE=6,BE的垂直平分線交BC的延長線于點(diǎn)F,連接EF交CD于點(diǎn)G.若G是CD的中點(diǎn),則BC的長是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明袋子中有1個(gè)紅球和3個(gè)白球,這些球除顏色外都相同.
(1)從袋中任意摸出2個(gè)球,用樹狀圖或列表求摸出的2個(gè)球顏色不同的概率;
(2)在袋子中再放入x個(gè)白球后,進(jìn)行如下實(shí)驗(yàn):從袋中隨機(jī)摸出1個(gè)球,記錄下顏色后放回袋子中并攪勻.經(jīng)大量試驗(yàn),發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.95左右,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,P是AB邊上的一點(diǎn)(不與A,B重合),PE平分∠APC交射線AD于E,過E作EM⊥PE交直線CP于M,交直線CD于N.
(1)求證:CM=CN;
(2)若AB:BC=4:3,
①當(dāng)= 時(shí),E恰好是AD的中點(diǎn);
②如圖2,當(dāng)△PEM與△PBC相似時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與CD交于點(diǎn)O,OE平分∠AOC,點(diǎn)F為AB上一點(diǎn)(不與點(diǎn)A及O重合),過點(diǎn)F作FG∥OE,交CD于點(diǎn)G,若∠AOD=110°,則∠AFG度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知將一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)
(1)如圖1擺放,點(diǎn)O、A、C在一直線上,則∠BOD的度數(shù)是多少?
(2)如圖2,將直角三角板OCD繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng),若要OB恰好平分∠COD,則∠AOC的度數(shù)是多少?
(3)如圖3,當(dāng)三角板OCD擺放在∠AOB內(nèi)部時(shí),作射線OM平分∠AOC,射線ON平分∠BOD,如果三角板OCD在∠AOB內(nèi)繞點(diǎn)O任意轉(zhuǎn)動(dòng),∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com