如圖,AB為半圓的直徑,點(diǎn)P為AB上一動點(diǎn).動點(diǎn)P從點(diǎn)A 出發(fā),沿AB勻速運(yùn)動到點(diǎn)B,運(yùn)動時間為t.分別以AP與PB為直徑作半圓,則圖中陰影部分的面積S與時間t之間的函數(shù)圖象大致為(   )


A.                  B.                C.             D.
D.

試題分析:按等量關(guān)系“陰影面積=以AB為直徑的半圓面積-以AP為直徑的半圓面積-以PB為直徑的半圓面積”列出函數(shù)關(guān)系式,然后再判斷函數(shù)圖象.
設(shè)P點(diǎn)運(yùn)動速度為v(常量),AB=a(常量),則AP=vt,PB=a-vt;
則陰影面積
由函數(shù)關(guān)系式可以看出,D的函數(shù)圖象符合題意.
故選D.
考點(diǎn): 動點(diǎn)問題的函數(shù)圖象.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與坐標(biāo)軸交于三點(diǎn),點(diǎn)的橫坐標(biāo)為,過點(diǎn)的直線軸交于點(diǎn),點(diǎn)是線段上的一個動點(diǎn),于點(diǎn).若,且

(1)求的值
(2)求出點(diǎn)的坐標(biāo)(其中用含的式子表示):
(3)依點(diǎn)的變化,是否存在的值,使為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A(1,0)、B(-4,0)兩點(diǎn),交y軸與C點(diǎn).

(1)求該拋物線的解析式.
(2)在該拋物線位于第二象限的部分上是否存在點(diǎn)D,使得△DBC的面積S最大?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
(3)設(shè)拋物線的頂點(diǎn)為點(diǎn)F,連接線段CF,連接直線BC,請問能否在直線BC上找到一個點(diǎn)M,在拋物線上找到一個點(diǎn)N,使得C、F、M、N四點(diǎn)組成的四邊形為平行四邊形,若存在,請寫出點(diǎn)M和點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

是二次函數(shù),則m=      。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B(0,4),已知點(diǎn)E(0,1).

(1)求m的值及點(diǎn)A的坐標(biāo);
(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結(jié)A′B、BE′.
①當(dāng)點(diǎn)E′落在該二次函數(shù)的圖象上時,求AA′的長;
②設(shè)AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點(diǎn)E′的坐標(biāo);
③當(dāng)A′B+BE′取得最小值時,求點(diǎn)E′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是二次函數(shù)圖像的一部分,其對稱軸是,且過點(diǎn)(-3,0),下列說法:①<0 ④若(-5,y1),(1,y2)是拋物線上兩點(diǎn),則,其中說法正確的是(   )
A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點(diǎn)坐標(biāo)是(      ) 
A.(2,1)B.(-2,-1)C.(-2,1)D.(2,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若將函數(shù)y=2x2的圖象向左平移1個單位,再向上平移2個單位,可得到的拋物線是               .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù) 的圖象經(jīng)過原點(diǎn),則m=_________

查看答案和解析>>

同步練習(xí)冊答案