如圖這是某次運(yùn)動會開幕式上點(diǎn)燃火炬時在平面直角坐標(biāo)系中的示意圖,在地面有O、A兩個觀測點(diǎn),分別測得目標(biāo)點(diǎn)火炬C的仰視角為α、β,OA=2米,tanα=數(shù)學(xué)公式,tanβ=數(shù)學(xué)公式,位于點(diǎn)O正上方2米處的D點(diǎn)發(fā)射裝置,可以向目標(biāo)C發(fā)射一個火球點(diǎn)燃火炬,該火球運(yùn)行的軌跡為一拋物線,當(dāng)火球運(yùn)行到距地面最大高度20米時,相應(yīng)的水平距離為12米(圖中E點(diǎn)).
(1)求火球運(yùn)行軌跡的拋物線對應(yīng)的函數(shù)解析式;
(2)說明按(1)中軌跡運(yùn)行的火球能否點(diǎn)燃目標(biāo)C.

解:(1)已知頂點(diǎn)E(12,20)可設(shè)火球運(yùn)行拋物線解析式為
y=a(x-12)2+20,
把點(diǎn)D(0,2)代入解析式,
得a=-,
∴火球運(yùn)行軌跡的拋物線對應(yīng)的函數(shù)解析式為:
y=-(x-12)2+20=-x2+3x+2;

(2)設(shè)C(x1,y1),作CF⊥x軸,垂足為F,
則tanα==
在Rt△AFC中,tanβ==
解以上兩個分式方程得x1=20,y1=12,即C(20,12),
代入y=-x2+3x+2適合,
所以點(diǎn)C在拋物線上,故能點(diǎn)燃目標(biāo).
分析:(1)本題是拋物線的問題,要充分運(yùn)用拋物線在直角坐標(biāo)系中的解析式解題,由已知得拋物線的頂點(diǎn)及經(jīng)過一點(diǎn),可設(shè)拋物線解析式的頂點(diǎn)式.
(2)確定C點(diǎn)坐標(biāo),根據(jù)已知條件,需要解直角三角形;作CF⊥x軸,垂足為F,把問題轉(zhuǎn)化到直角三角形中解決.
點(diǎn)評:本題既是實際問題,又綜合了幾方面的知識,解這類問題,需要逐層分析,逐步解答,由易到難.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖這是某次運(yùn)動會開幕式上點(diǎn)燃火炬時在平面直角坐標(biāo)系中的示意圖,在地面有O、A兩個觀測點(diǎn),分別測得目標(biāo)點(diǎn)火炬C的仰視角為α、β,OA=2米,tanα=
3
5
,tanβ=
2
3
,位于點(diǎn)O正上方2米處的D點(diǎn)發(fā)射裝置,可以向目標(biāo)C發(fā)射一個火球點(diǎn)燃火炬,該火球運(yùn)行的軌跡為一拋物線,當(dāng)火球運(yùn)行到距地面最大高度20米時,相應(yīng)的水平距離為12米(圖中精英家教網(wǎng)E點(diǎn)).
(1)求火球運(yùn)行軌跡的拋物線對應(yīng)的函數(shù)解析式;
(2)說明按(1)中軌跡運(yùn)行的火球能否點(diǎn)燃目標(biāo)C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005-2006學(xué)年廣東省深圳市蓮花中學(xué)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖這是某次運(yùn)動會開幕式上點(diǎn)燃火炬時在平面直角坐標(biāo)系中的示意圖,在地面有O、A兩個觀測點(diǎn),分別測得目標(biāo)點(diǎn)火炬C的仰視角為α、β,OA=2米,tanα=,tanβ=,位于點(diǎn)O正上方2米處的D點(diǎn)發(fā)射裝置,可以向目標(biāo)C發(fā)射一個火球點(diǎn)燃火炬,該火球運(yùn)行的軌跡為一拋物線,當(dāng)火球運(yùn)行到距地面最大高度20米時,相應(yīng)的水平距離為12米(圖中E點(diǎn)).
(1)求火球運(yùn)行軌跡的拋物線對應(yīng)的函數(shù)解析式;
(2)說明按(1)中軌跡運(yùn)行的火球能否點(diǎn)燃目標(biāo)C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年河南省周口市九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖這是某次運(yùn)動會開幕式上點(diǎn)燃火炬時在平面直角坐標(biāo)系中的示意圖,在地面有O、A兩個觀測點(diǎn),分別測得目標(biāo)點(diǎn)火炬C的仰視角為α、β,OA=2米,tanα=,tanβ=,位于點(diǎn)O正上方2米處的D點(diǎn)發(fā)射裝置,可以向目標(biāo)C發(fā)射一個火球點(diǎn)燃火炬,該火球運(yùn)行的軌跡為一拋物線,當(dāng)火球運(yùn)行到距地面最大高度20米時,相應(yīng)的水平距離為12米(圖中E點(diǎn)).
(1)求火球運(yùn)行軌跡的拋物線對應(yīng)的函數(shù)解析式;
(2)說明按(1)中軌跡運(yùn)行的火球能否點(diǎn)燃目標(biāo)C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(20):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖這是某次運(yùn)動會開幕式上點(diǎn)燃火炬時在平面直角坐標(biāo)系中的示意圖,在地面有O、A兩個觀測點(diǎn),分別測得目標(biāo)點(diǎn)火炬C的仰視角為α、β,OA=2米,tanα=,tanβ=,位于點(diǎn)O正上方2米處的D點(diǎn)發(fā)射裝置,可以向目標(biāo)C發(fā)射一個火球點(diǎn)燃火炬,該火球運(yùn)行的軌跡為一拋物線,當(dāng)火球運(yùn)行到距地面最大高度20米時,相應(yīng)的水平距離為12米(圖中E點(diǎn)).
(1)求火球運(yùn)行軌跡的拋物線對應(yīng)的函數(shù)解析式;
(2)說明按(1)中軌跡運(yùn)行的火球能否點(diǎn)燃目標(biāo)C.

查看答案和解析>>

同步練習(xí)冊答案