【題目】為了樹立文明鄉(xiāng)風(fēng),推進(jìn)社會(huì)主義新農(nóng)村建設(shè),某村決定組建村民文體團(tuán)隊(duì),現(xiàn)圍繞“你最喜歡的文體活動(dòng)項(xiàng)目(每人僅限一項(xiàng))”,在全村范圍內(nèi)隨機(jī)抽取部分村民進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:

1)這次參與調(diào)查的村民人數(shù)為 人;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)求扇形統(tǒng)計(jì)圖中“劃龍舟”所在扇形的圓心角的度數(shù);

4)若在“廣場(chǎng)舞、腰鼓、花鼓戲、劃龍舟”這四個(gè)項(xiàng)目中任選兩項(xiàng)組隊(duì)參加端午節(jié)慶典活動(dòng),請(qǐng)用列表或畫樹狀圖的方法,求恰好選中“花鼓戲、劃龍舟”這兩個(gè)項(xiàng)目的概率.

【答案】1120;(2)答案見解析;(390°;(4

【解析】

(1)直接利用腰鼓所占比例以及條形圖中人數(shù)即可得出這次參與調(diào)查的村民人數(shù);

(2)利用條形統(tǒng)計(jì)圖以及樣本數(shù)量得出喜歡廣場(chǎng)舞的人數(shù);

(3)利用“劃龍舟”人數(shù)在樣本中所占比例得出“劃龍舟”所在扇形的圓心角的度數(shù);

(4)利用樹狀圖法列舉出所有的可能進(jìn)而得出概率.

(1)這次參與調(diào)查的村民人數(shù)為:24÷20%=120(),

故答案為:120

(2)喜歡廣場(chǎng)舞的人數(shù)為:120241530942(),如圖所示:

(3)扇形統(tǒng)計(jì)圖中“劃龍舟”所在扇形的圓心角的度數(shù)為:360°=90°;

(4)如圖所示:

一共有12種可能,恰好選中“花鼓戲、劃龍舟”這兩個(gè)項(xiàng)目的有2種可能,故恰好選中“花鼓戲、劃龍舟”這兩個(gè)項(xiàng)目的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀,然后解答提出的問題:

設(shè) m,n 是有理數(shù),且滿足 m+n=2﹣3 ,求 nm 的值.

解:由題意,移項(xiàng)得,(m﹣2)+(n+3)=0,

∵m、n 是有理數(shù),∴m﹣2,n+3 也是有理數(shù),

又∵ 是有理數(shù),∴m﹣2=0,n+3=0,∴m=2,n=﹣3

∴nm=(﹣3)2=9.

問題解決:設(shè) a、b 都是有理數(shù),且 a2+b=16+5,求2﹣5b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=2,∠BAC=20°。動(dòng)點(diǎn)P,Q分別在直線BC上運(yùn)動(dòng),且始終保持∠PAQ=100°。設(shè)BP=x,CQ=y,求y與x之間的函數(shù)表達(dá)式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時(shí)內(nèi)其血液中酒精含量y(毫克/百毫升)與時(shí)間(時(shí))的關(guān)系可近似地用二次函數(shù)刻畫;1.5時(shí)后(包括1.5時(shí))y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學(xué)模型計(jì)算:

喝酒后幾時(shí)血液中的酒精含量達(dá)到最大值?最大值為多少?

當(dāng)=5時(shí),y=45.求k的值.

(2)按國(guó)家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問題:

(1)求n的值;

(2)若該校學(xué)生共有1200人,試估計(jì)該校喜愛看電視的學(xué)生人數(shù);

(3)若調(diào)查到喜愛體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BECD 相交于點(diǎn) A,連接 BCDE,下列條件中不能判斷△ABCADE 的是( )

A. B=∠D B. C=∠E C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線yx2﹣2ax+b的頂點(diǎn)在x軸上,Px1,mQx2,m)(x1x2是此拋物線上的兩點(diǎn).

(1)a=1.

①當(dāng)mb時(shí),求x1,x2的值;

②將拋物線沿y軸平移,使得它與x軸的兩個(gè)交點(diǎn)間的距離為4,試描述出這一變化過程;

(2)若存在實(shí)數(shù)c,使得x1c﹣1,且x2c+7成立,則m的取值范圍是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y1=ax2+bx+ca≠0)和一次函數(shù)y2=kx+nk≠0)的圖象如圖所示,下面有四個(gè)推斷:

①二次函數(shù)y1有最大值;

②二次函數(shù)y1的圖象關(guān)于直線x=﹣1對(duì)稱

③當(dāng)x=﹣2時(shí),二次函數(shù)y1的值大于0

④過動(dòng)點(diǎn)Pm,0)且垂直于x軸的直線與y1y2的圖象的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),m的取值范圍是m﹣3m﹣1

以上推斷正確的是( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為圓心,1為半徑作圓,點(diǎn)P在直線上運(yùn)動(dòng),過點(diǎn)P作該圓的一條切線,切點(diǎn)為A,則PA的最小值為  

A. 3 B. 2 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案