已知a、b、c均為實(shí)數(shù),且+︳b+1︳+(c+12)2=0,求方程ax2+bx+c=0的根.
【答案】分析:首先根據(jù)題意,求出a、b、c的值,然后把a(bǔ)、b、c的值代入到第二個(gè)方程,確定方程的各項(xiàng)系數(shù),即可求出x的值.
解答:解:∵+︳b+1︳+(c+12)2=0,
∴a=1,b=-1,c=-12,
∵ax2+bx+c=0,
∴x2-x-12=0,
∴(x-4)(x+3)=0,
∴x1=4,x2=-3.
點(diǎn)評(píng):本題主要考查非負(fù)數(shù)的性質(zhì)、用因式分解法解一元二次方程,關(guān)鍵在于首先求出a、b、c的值,確定一元二次方程的各項(xiàng)系數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程
1
4
x2-2
a
x+(a+1)2=0
有實(shí)根.
(1)求a的值;
(2)若關(guān)于x的方程mx2+(1-m)x-a=0的所有根均為整數(shù),求整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+4x+b,其中a<0,a、b是實(shí)數(shù),設(shè)關(guān)于x的方程f(x)=0的兩根為x1,x2,f(x)=x的兩實(shí)根為α、β.
(1)若|α-β|=1,求a、b滿足的關(guān)系式;
(2)若a、b均為負(fù)整數(shù),且|α-β|=1,求f(x)解析式;
(3)試比較(x1+1)(x2+1)與7的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程x2+kx-1=0.
(1)求證:不論k為何值,方程均有兩不等實(shí)根;
(2)已知方程的兩根之和為2,求k的值及方程的兩根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2003•河南)為了了解中學(xué)生的身體素質(zhì)情況,現(xiàn)抽取了某校實(shí)初中三年級(jí)50名學(xué)生,對(duì)每各學(xué)生進(jìn)行了100米跑,立定跳遠(yuǎn)、擲鉛球三個(gè)項(xiàng)目的測(cè)試,每個(gè)項(xiàng)目滿分10分,圖為將學(xué)生所得的三項(xiàng)成績(jī)(成績(jī)均為整數(shù))之和進(jìn)行整理后,分成五組畫出頻率分布直方圖.已知從左到右前四個(gè)小組的頻率分別是0.02,0.1,0.12,0,46,根據(jù)已知條件及圖形提供的信息下列問題:
①每五小組的頻數(shù)是多少?
②如果23分(包括23)以上表明身體素質(zhì)良好,那么身體素質(zhì)良好的學(xué)生占全部測(cè)試學(xué)生百分率是多少?
③在這次測(cè)試中,學(xué)生成績(jī)的中位數(shù)落在第幾小組內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于的方程有實(shí)根.
(1)求的值;
(2)若關(guān)于的方程的所有根均為整數(shù),求整數(shù)的值

查看答案和解析>>

同步練習(xí)冊(cè)答案