【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB= ,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊△ABC的邊長為 ,問題得到解決.
請你參考李明同學(xué)的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA= ,BP= ,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.
【答案】解:如圖,
將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得△BP′A,則△BPC≌△BP′A.
∴AP′=PC=1,BP=BP′= ;
連接PP′,
在Rt△BP′P中,
∵BP=BP′= ,∠PBP′=90°,
∴PP′=2,∠BP′P=45°;
在△AP′P中,AP′=1,PP′=2,AP= ,
∵ ,即AP′2+PP′2=AP2;
∴△AP′P是直角三角形,即∠AP′P=90°,
∴∠AP′B=135°,
∴∠BPC=∠AP′B=135°.
過點(diǎn)B作BE⊥AP′,交AP′的延長線于點(diǎn)E;則△BEP′是等腰直角三角形,
∴∠EP′B=45°,
∴EP′=BE=1,
∴AE=2;
∴在Rt△ABE中,由勾股定理,得AB= ;
∴∠BPC=135°,正方形邊長為 .
【解析】參照題目給出的解題思路,可將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到△BP′A,根據(jù)旋轉(zhuǎn)的性質(zhì)知:
△BPC≌△BP′A,進(jìn)而可判斷出△BPP′是等腰直角三角形,可得∠BP′P=45°;然后根據(jù)AP′、PP′、PA的長,利用勾股定理得到△APP′是直角三角形的結(jié)論,可得∠AP′P=90°,即可求得∠BP′A的度數(shù),進(jìn)而可得∠BPC的度數(shù).過B作AP′的垂線,交AP′的延長線于E,易知△BEP′是等腰直角三角形,即可得到P′E、BE的長,進(jìn)而可在Rt△ABE中,利用勾股定理求得正方形的邊長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解中考體育科目訓(xùn)練情況,某校從九年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次中考體育科目測試(把測試結(jié)果分為A,B,C,D四個(gè)等級),并將測試結(jié)果繪制成了如圖所示的兩幅不完整統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖中提供的信息,結(jié)論錯誤的是( )
A.本次抽樣測試的學(xué)生人數(shù)是40
B.在圖1中,∠α的度數(shù)是126°
C.該校九年級有學(xué)生500名,估計(jì)D級的人數(shù)為80
D.從被測學(xué)生中隨機(jī)抽取一位,則這位學(xué)生的成績是A級的概率為0.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至A處時(shí),該島位于正東方向的B處,為了防止某國海巡警干擾,就請求我國C處的漁監(jiān)船前往B處護(hù)航,測得C與AB的距離CD為20海里,已知A位于C處的南偏西60°方向上,B位于C的南偏東45°的方向上,求A、B之間的距離.( ≈1.7,結(jié)果精確到1海里)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寬與長的比是 (約0.618)的矩形叫做黃金矩形,黃金矩形蘊(yùn)藏著豐富的美學(xué)價(jià)值,給我們以協(xié)調(diào)和勻稱的美感.我們可以用這樣的方法畫出黃金矩形:作正方形ABCD,分別取AD、BC的中點(diǎn)E、F,連接EF:以點(diǎn)F為圓心,以FD為半徑畫弧,交BC的延長線于點(diǎn)G;作GH⊥AD,交AD的延長線于點(diǎn)H,則圖中下列矩形是黃金矩形的是( )
A.矩形ABFE
B.矩形EFCD
C.矩形EFGH
D.矩形DCGH
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A在反比例函數(shù)y= (x<0)上,作Rt△ABC,點(diǎn)D為斜邊AC的中點(diǎn),連DB并延長交y軸于點(diǎn)E.若△BCE的面積為8,則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,﹣ ),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
(1)求拋物線的解析式及A、B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點(diǎn)P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計(jì)劃一次購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元. ①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大?
(3)實(shí)際進(jìn)貨時(shí),廠家對A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購進(jìn)A型電腦70臺,若商店保持同種電腦的售價(jià)不變,請你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺電腦銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的布袋中,裝有紅、黑、白三種只有顏色不同的小球,其中紅色小球4個(gè),黑、白色小球的數(shù)目相同.小明從布袋中隨機(jī)摸出一球,記下顏色后放回布袋中,搖勻后隨機(jī)摸出一球,記下顏色;…如此大量摸球?qū)嶒?yàn)后,小明發(fā)現(xiàn)其中摸出的紅球的頻率穩(wěn)定于20%,由此可以估計(jì)布袋中的黑色小球有 個(gè).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com