(2013•上海)在梯形ABCD中,AD∥BC,對角線AC和BD交于點O,下列條件中,能判斷梯形ABCD是等腰梯形的是( 。
分析:等腰梯形的判定定理有:①有兩腰相等的梯形是等腰梯形,②對角線相等的梯形是等腰梯形,③在同一底上的兩個角相等的梯形是等腰梯形,根據(jù)以上內(nèi)容判斷即可.
解答:解:A、∵∠BDC=∠BCD,
∴BD=BC,
根據(jù)已知AD∥BC不能推出四邊形ABCD是等腰梯形,故本選項錯誤;
B、根據(jù)∠ABC=∠DAB和AD∥BC不能推出四邊形ABCD是等腰梯形,故本選項錯誤;
C、∵∠ADB=∠DAC,AD∥BC,
∴∠ADB=∠DAC=∠DBC=∠ACB,
∴OA=OD,OB=OC,
∴AC=BD,
∵AD∥BC,
∴四邊形ABCD是等腰梯形,故本選項正確;
D、根據(jù)∠AOB=∠BOC,只能推出AC⊥BD,
再根據(jù)AD∥BC不能推出四邊形ABCD是等腰梯形,故本選項錯誤.
故選C.
點評:本題考查了對等腰梯形的判定定理的應(yīng)用,主要考查學(xué)生的推理能力和辨析能力,注意:等腰梯形的判定定理有:①有兩腰相等的梯形是等腰梯形,②對角線相等的梯形是等腰梯形,③在同一底上的兩個角相等的梯形是等腰梯形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•上海)如圖,已知在△ABC中,點D、E、F分別是邊AB、AC、BC上的點,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•上海)在⊙O中,已知半徑長為3,弦AB長為4,那么圓心O到AB的距離為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•上海)如圖,在平面直角坐標(biāo)系xOy中,頂點為M的拋物線y=ax2+bx(a>0),經(jīng)過點A和x軸正半軸上的點B,AO=OB=2,∠AOB=120°.
(1)求這條拋物線的表達式;
(2)連接OM,求∠AOM的大;
(3)如果點C在x軸上,且△ABC與△AOM相似,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•上海)在矩形ABCD中,點P是邊AD上的動點,連接BP,線段BP的垂直平分線交邊BC于點Q,垂足為點M,聯(lián)結(jié)QP(如圖).已知AD=13,AB=5,設(shè)AP=x,BQ=y.
(1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(2)當(dāng)以AP長為半徑的⊙P和以QC長為半徑的⊙Q外切時,求x的值;
(3)點E在邊CD上,過點E作直線QP的垂線,垂足為F,如果EF=EC=4,求x的值.

查看答案和解析>>

同步練習(xí)冊答案