證明:(1)∵四邊形ABCD是平行四邊形,
∴∠B=∠D,
∵根據(jù)折疊可得∠D=∠NMA,
∴∠B=∠NMA,
∴MN∥BC;
(2)∵四邊形ABCD是平行四邊形,
∴DN∥AM,AD∥BC,
∵M(jìn)N∥BC,
∴AD∥MN,
∴四邊形AMND是平行四邊形,
根據(jù)折疊可得AM=DA,
∴四邊形AMND為菱形,
∴MN=AM.
分析:(1)根據(jù)四邊形ABCD是平行四邊形,可得∠B=∠D,再根據(jù)折疊可得∠D=∠NMA,再利用等量代換可得∠B=∠NMA,然后根據(jù)平行線的判定方法可得MN∥BC;
(2)首先證明四邊形AMND是平行四邊形,再根據(jù)折疊可得AM=DA,進(jìn)而可證出四邊形AMND為菱形,再根據(jù)菱形的性質(zhì)可得MN=AM.
點評:此題主要考查了翻折變換,以及平行四邊形的判定與性質(zhì),菱形的判定與性質(zhì),關(guān)鍵是找準(zhǔn)折疊以后哪些線段是對應(yīng)相等的,哪些角是對應(yīng)相等的.