【題目】已知,平面直角坐標系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點P是 y2 上的一個動點,則點P到直線 y1 的最短距離為()
A. B. C. D.
【答案】B
【解析】
設過點P平行直線y1的解析式為y=x+b,當直線y=x+3與拋物線只有一個交點時,點P到直線y1的距離最小,如圖設直線y1交x軸于A,交y軸于B,直線y=x+交x軸于C,作CD⊥AB于D,PE⊥AB于E,想辦法求出CD的長即可解決問題.
解:設過點P平行直線y1的解析式為y=x+b,
當直線y=x+3與拋物線只有一個交點時,點P到直線y1的距離最小,
由,消去y得到:x2-2x+2b=0,
當△=0時,4-8b=0,
∴b=,
∴直線的解析式為y=x+,
如圖設直線y1交x軸于A,交y軸于B,直線y=x+交x軸于C,作CD⊥AB于D,PE⊥AB于E,則A(-3,0),B(0,3),C(-,0),
∴OA=OB=3,OC=,AC=,
∴∠DAC=45°,
∴CD==,
∵AB∥PC,CD⊥AB,PE⊥AB,
∴PE=CD=,
故選:B.
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2+bx+3經過點A(﹣1,8),頂點為M;
(1)求拋物線的表達式;
(2)設拋物線對稱軸與x軸交于點B,連接AB、AM,求△ABM的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,設在一個寬度為w的小巷內,一個梯子長為a,梯子的腳位于A點,將梯子的頂端放在一堵墻上Q點時,Q離開地面的高度為k,梯子與地面的夾角為45°:將該梯子的頂端放在另一堵墻上R點時,R點離開地面的高度為h,且此時梯子與地面的夾角為75°,則小巷寬度w=( )
A.hB.kC.aD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:關于x的二次函數的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,中,于,且.
(1)試說明是等腰三角形;
(2)已知,如圖2,動點從點出發(fā)以每秒的速度沿線段向點運動,同時動點從點出發(fā)以相同速度沿線段向點運動,設點運動的時間為(秒).
①若的邊于平行,求的值;
②若點是邊的中點,問在點運動的過程中,能否成為等腰三角形?若能,求出的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B、C三地在同一直線上,甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)2小時,甲車到達B地后立即調頭,并將速度提高10%后與乙車同向行駛,乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,經過一段時間后兩車同時到達C地,設兩車之間的距離為y(千米),甲行駛的時間x(小時).y與x的關系如圖所示,則B、C兩地相距_____千米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線交于點O,點E是菱形外一點,DE∥AC,CE∥BD.
(1)求證:四邊形DECO是矩形;
(2)連接AE交BD于點F,當∠ADB=30°,DE=3時,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上.已知α=36°,求長方形卡片的周長.
(精確到1mm,參考數據:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com