精英家教網 > 初中數學 > 題目詳情

【題目】已知,平面直角坐標系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點P是 y2 上的一個動點,則點P到直線 y1 的最短距離為()

A. B. C. D.

【答案】B

【解析】

設過點P平行直線y1的解析式為y=x+b,當直線y=x+3與拋物線只有一個交點時,點P到直線y1的距離最小,如圖設直線y1x軸于A,交y軸于B,直線y=x+x軸于C,作CDABD,PEABE,想辦法求出CD的長即可解決問題.

解:設過點P平行直線y1的解析式為y=x+b,

當直線y=x+3與拋物線只有一個交點時,點P到直線y1的距離最小,

,消去y得到:x2-2x+2b=0,

=0時,4-8b=0,

b=

∴直線的解析式為y=x+,

如圖設直線y1x軸于A,交y軸于B,直線y=x+x軸于C,作CDABD,PEABE,則A(-3,0),B(0,3),C(-,0),

OA=OB=3,OC=,AC=

∴∠DAC=45°,

CD==

ABPC,CDAB,PEAB,

PE=CD=,

故選:B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點D,E分別在等邊△ABC的邊ABBC上,將△BDE沿直線DE翻折,使點B落在B1處.若∠ADB1=70°,則∠CEB1=___

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=x2+bx+3經過點A(﹣1,8),頂點為M;

(1)求拋物線的表達式;

(2)設拋物線對稱軸與x軸交于點B,連接AB、AM,求△ABM的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,設在一個寬度為w的小巷內,一個梯子長為a,梯子的腳位于A點,將梯子的頂端放在一堵墻上Q點時,Q離開地面的高度為k,梯子與地面的夾角為45°:將該梯子的頂端放在另一堵墻上R點時,R點離開地面的高度為h,且此時梯子與地面的夾角為75°,則小巷寬度w=

A.hB.kC.aD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:關于x的二次函數的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點M、N同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,中,,且

1)試說明是等腰三角形;

2)已知,如圖2,動點從點出發(fā)以每秒的速度沿線段向點運動,同時動點從點出發(fā)以相同速度沿線段向點運動,設點運動的時間為(秒)

①若的邊于平行,求的值;

②若點是邊的中點,問在點運動的過程中,能否成為等腰三角形?若能,求出的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A、B、C三地在同一直線上,甲、乙兩車分別從AB兩地相向勻速行駛,甲車先出發(fā)2小時,甲車到達B地后立即調頭,并將速度提高10%后與乙車同向行駛,乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,經過一段時間后兩車同時到達C地,設兩車之間的距離為y(千米),甲行駛的時間x(小時).yx的關系如圖所示,則B、C兩地相距_____千米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD的對角線交于點O,點E是菱形外一點,DEAC,CEBD

1)求證:四邊形DECO是矩形;

2)連接AEBD于點F,當∠ADB30°,DE3時,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上.已知α=36°,求長方形卡片的周長.

(精確到1mm,參考數據:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)

查看答案和解析>>

同步練習冊答案