已知拋物線y=x2-mx+m-2.
(1)求證:此拋物線與x軸有兩個不同的交點;
(2)若m是整數(shù),拋物線y=x2-mx+m-2與x軸交于整數(shù)點,求m的值;
(3)在(2)的條件下,設(shè)拋物線的頂點為A,拋物線與x軸的兩個交點中右側(cè)交點為B.若m為坐標(biāo)軸上一點,且MA=MB,求點M的坐標(biāo).
(1)證明:令y=0,則x2-mx+m-2=0.
因為△=m2-4m+8=(m-2)2+4>0,(1分)
所以此拋物線與x軸有兩個不同的交點.(2分)

(2)因為關(guān)于x的方程x2-mx+m-2=0的根為x=
(-m)2-4(m-2)
2
=
(m-2)2+4
2

由m為整數(shù),當(dāng)(m-2)2+4為完全平方數(shù)時,此拋物線與x軸才有可能交于整數(shù)點.
設(shè)(m-2)2+4=n2(其中n為整數(shù)),(3分)
則[n+(m-2)][n-(m-2)]=4
因為n+(m-2)與n-(m-2)的奇偶性相同,
所以
n+m-2=2
n-m+2=2

n+m-2=-2
n-m+2=-2

解得m=2.
經(jīng)過檢驗,當(dāng)m=2時,方程x2-mx+m-2=0有整數(shù)根.
所以m=2.(5分)

(3)當(dāng)m=2時,
此二次函數(shù)解析式為y=x2-2x=(x-1)2-1,
則頂點坐標(biāo)為(1,-1).
拋物線與x軸的交點為O(0,0)、B(2,0).
設(shè)拋物線的對稱軸與x軸交于點M1,則M1(1,0).
在直角三角形AM1O中,由勾股定理,得AO=
2

由拋物線的對稱性可得,AB=AO=
2

又因為(
2
)2+(
2
)2=22
,即OA2+AB2=OB2
所以△ABO為等腰直角三角形.(6分)
則M1A=M1B.
所以M1(1,0)為所求的點.(7分)
若滿足條件的點M2在y軸上時,
設(shè)M2坐標(biāo)為(0,y),
過A作AN⊥y軸于N,連接AM2、BM2,則M2A=M2B.
由勾股定理,
即M2A2=M2N2+AN2;M2B2=M2O2+OB2
即(y+1)2+12=y2+22
解得y=1.
所以M2(0,1)為所求的點.(8分)
綜上所述,滿足條件的M點的坐標(biāo)為(1,0)或(0,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

仔細(xì)閱讀并完成下題:
我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”;如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,已知“蛋圓”是由拋物線y=ax2-2ax+c的一部分和圓心為M的半圓合成的.點A、B、C分別是“蛋圓”與坐標(biāo)軸的交點,已知點A的坐標(biāo)為(-1,0),AB為半圓的直徑,
(1)點B的坐標(biāo)為(______,______);點C的坐標(biāo)為(______,______),半圓M的半徑為______;
(2)若P是“蛋圓”上的一點,且以O(shè)、P、B為頂點的三角形是等腰直角三角形求符合條件的點P的坐標(biāo),以及所對應(yīng)的a的值;
(3)已知直線y=x-
7
2
是“蛋圓”的切線,求滿足條件的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系內(nèi)有兩點A(-2,0),B(
1
2
,0),CB所在直線為y=2x+b,
(1)求b與C的坐標(biāo);
(2)連接AC,求證:△AOC△COB;
(3)求過A,B,C三點且對稱軸平行于y軸的拋物線解析式;
(4)在拋物線上是否存在一點P(不與C重合),使得S△ABP=S△ABC?若存在,請求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c與x軸相交于A、B,點B的坐標(biāo)為(10,0),頂點M的坐標(biāo)為(4,8),點P從點M出發(fā),以每秒1個單位的速度沿線段MA向A點運動;點Q從點A出發(fā),以每秒2個單位的速度沿AB向B點運動,若P、Q同時出發(fā),當(dāng)其中的一點到達(dá)終點時,另一點也隨之停止運動,設(shè)運動時間為t秒鐘.
(1)求拋物線的解析式;
(2)設(shè)△APQ的面積為S,求S與t之間的函數(shù)關(guān)系式,△APQ的面積是否有最大值?若有,請求出其最大值;若沒有,請說明理由;
(3)當(dāng)t為何值時,△APQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點,直線l與拋物線交于A、C兩點,其中C點的橫坐標(biāo)為2.
(1)求拋物線的解析式及直線AC的解析式;
(2)P是線段AC上的一個動點,過P點作x軸的垂線交拋物線于E點,求線段PE長度的最大值;
(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+bx+c圖象的對稱軸是直線x=2,且過點A(0,3).
(1)求b、c的值;
(2)求出該二次函數(shù)圖象與x軸的交點B、C的坐標(biāo);
(3)如果某個一次函數(shù)圖象經(jīng)過坐標(biāo)原點O和該二次函數(shù)圖象的頂點M.問在這個一次函數(shù)圖象上是否存在點P,使得△PBC是直角三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

對于二次函數(shù)y=x2+2,當(dāng)x=______時,二次函數(shù)的最小值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是某河床橫斷面的示意圖.據(jù)該河段的水文資料顯示,當(dāng)水面寬為40米時,河水最深為2米.
(1)請在恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系中求出與該拋物線型河床橫斷面對應(yīng)的函數(shù)關(guān)系式;
(2)當(dāng)水面寬度為36米時,一艘吃水深度(船底部到水面的距離)為1.8米的貨船能否在這個河段安全通過?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知直角梯形紙片OABC在平面直角坐標(biāo)系中的位置如圖①所示,四個頂點的坐標(biāo)分別為O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),點P在線段OA上(不與O、A重合),將紙片折疊,使點A落在射線AB上(記為點A’),折痕PQ與射線AB交于點Q,設(shè)OP=x,折疊后紙片重疊部分的面積為y.(圖②供探索用)
(1)求∠OAB的度數(shù);
(2)求y與x的函數(shù)關(guān)系式,并寫出對應(yīng)的x的取值范圍;
(3)y存在最大值嗎?若存在,求出這個最大值,并求此時x的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案