【題目】如圖,梯形ABCD中,ABCD,∠A=90°,EAD上,且CE平分∠BCD,BE平分∠ABC,則下列關(guān)系式中成立的有( )

; ; ;④CE2=CD×BC; BE2=AE×BC

A.2B.3C.4D.5

【答案】B

【解析】

根據(jù)角平分線的性質(zhì),推出角相等,再得出邊相等,判斷出①②正確,再利用三角形不相似,排除其它選項,最后得解.

解:如圖,∵BE平分∠ABC,CE平分∠BCD

∴∠ABE=∠CBE,∠ABE=∠CBE.

∵CD∥BA,

∴∠ABC+∠BCD=180°.

∴∠BEC=∠D=∠A=90°.

則有△CED∽△BEA∽△CBE,

∴① 正確,③ 正確;

無法證明CD=DE,故②不正確;

故④CE 2=CD×BC正確;

故BE2=AE×BC不正確.

因此只有①②④正確.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:為緩解交通擁堵問題,小李將上班方式由自駕車改為騎電動車.他從家到達上班地點,自駕車要走的路程為10千米,騎電動車要走的路程為8千米,已知小李自駕車的速度是騎電動車速度的1.5倍,他由自駕車改為騎電動車后,時間多用了6分鐘.求小李自駕車和騎電動車的速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文化,源遠流長,在文學(xué)方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學(xué)為了了解學(xué)生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學(xué)生中進行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩個不完整的統(tǒng)計圖,請結(jié)合圖中信息解決下列問題:

(1)本次調(diào)查了   名學(xué)生,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為   度,并補全條形統(tǒng)計圖;

(2)此中學(xué)共有1600名學(xué)生,通過計算預(yù)估其中4部都讀完了的學(xué)生人數(shù);

(3)沒有讀過四大古典名著的兩名學(xué)生準備從四大固定名著中各自隨機選擇一部來閱讀,求他們選中同一名著的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,M,N是正方形ABCD的邊BC上兩個動點,滿足BM=CN,連結(jié)AC交DN于點P,連結(jié)AM交BP于點Q,若正方形的邊長為1,則線段CQ的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線與x軸交于點A(﹣1,0),B(3,0),與y軸交于點C(0,﹣3),拋物線頂點為D,連接AC,BC,CD,BD,點P是x軸下方拋物線上的一個動點,作PM⊥x軸于點M,設(shè)點M的橫坐標為m.

(1)求拋物線的解析式及點D的坐標;

(2)試探究是否存在這樣的點P,使得以P,M,B為頂點的三角形與△BCD相似?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)如圖2,PM交線段BC于點Q,過點P作PE∥AC交x軸于點E,交線段BC于點F,請用含m的代數(shù)式表示線段QF的長,并求出當m為何值時QF有最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】西瓜經(jīng)營戶以2/千克的價格購進一批小型西瓜,以3/千克的價格出售,每天可售出200千克.為了促銷,該經(jīng)營戶決定降價銷售.經(jīng)調(diào)查發(fā)現(xiàn),這種小型西瓜每降價0.1/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,為了減少庫存,該經(jīng)營戶要想每天盈利200元,應(yīng)將每千克小型西瓜的售價降低( 。┰

A.0.2或0.3

B.0.4

C.0.3

D.0.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校射擊隊從甲、乙、丙、丁四人中選拔一人參加市運動會射擊比賽,在選拔比賽中,每人射擊10次,他們10次成績的平均數(shù)及方差如下表所示:

平均數(shù)/環(huán)

9.5

9.5

9.6

9.6

方差/環(huán)2

5.1

4.7

4.5

5.1

請你根據(jù)表中數(shù)據(jù)選一人參加比賽,最合適的人選是(   )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形的對角線、相交于點,點是邊的延長線上一點,且,連接.

1)求證:;

2)如果,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組

請結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得_____________________;

(Ⅱ)解不等式②,得_____________________;

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:

(Ⅳ)原不等式組的解集為_____________________.

查看答案和解析>>

同步練習(xí)冊答案