如圖,一次函數(shù)y=-2x的圖象與二次函數(shù)y=-x2+3x圖象的對稱軸交于點B.已知點P是二次函數(shù)y=-x2+3x圖象在y軸右側(cè)部分上的一個動點,將直線y=-2x沿y軸向上平移,分別交x軸、y軸于C、D兩點.若以CD為直角邊的△PCD與△OCD相似,則點P的坐標(biāo)為
1
2
,
5
4
),(2,2),(
11
4
,
11
16
),(
13
5
,
26
25
1
2
,
5
4
),(2,2),(
11
4
,
11
16
),(
13
5
,
26
25
分析:設(shè)D(0,2a),則直線CD解析式為y=-2x+2a,可知C(a,0),以CD為直角邊的△PCD與△OCD相似,分為∠CDP=90°和∠DCP=90°兩種情況,分別求P點坐標(biāo)即可.
解答:解:設(shè)D(0,2a),則直線CD解析式為y=-2x+2a,
∴C(a,0),
∴OC:OD=1:2,
∴OD=2a,OC=a,
根據(jù)勾股定理可得:CD=
OC2+OD2
=
5
a.
∵以CD為直角邊的△PCD與△OCD相似,
①當(dāng)∠CDP=90°時,若PD:DC=OC:OD=1:2,則PD=
5
2
a,
設(shè)P的橫坐標(biāo)是x,則P點縱坐標(biāo)是-x2+3x,
根據(jù)題意得:
x2+(-x2+3x-2a)2=(
5
2
a)2
(
5
a)2+(
5
2
a)2=(-x2+3x)2+(x-a)2

解得:
x=
1
2
a=
1
2
,
則P的坐標(biāo)是:(
1
2
,
5
4
),
②當(dāng)∠CDP=90°時,若DC:PD=OC:OD=1:2,同理可以求得P(2,2),
③當(dāng)∠DCP=90°時,若PC:DC=OC:OD=1:2,則P(
11
4
,
11
16
),
④當(dāng)∠DCP=90°時,若DC:PD=OC:OD=1:2,則P(
13
5
26
25
).
故答案為:(
1
2
,
5
4
),(2,2),(
11
4
,
11
16
),(
13
5
,
26
25
).
點評:此題考查了一次函數(shù)與二次函數(shù)的相交問題、相似三角形的判定與性質(zhì)、兩點間的距離公式以及勾股定理.此題難度較大,注意掌握方程思想、分類討論思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點P,點P在第一象限.PA⊥x軸于點A,PB⊥y軸于點B.一次函數(shù)的圖象分別交x軸、y軸于點C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點A.當(dāng)y<3時,x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點
A(m,2)
(1)求點A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時,y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點A、點B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點C,CD⊥x軸于點D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊答案