如圖,矩形ABCD中,對(duì)角線AC=8cm,rAOB是等邊三角形,則AD的長為      cm.
4
∵△AOB是等邊三角形,∴∠BAC=60°,∴∠ACB=30°,∵AC=8cm,∴AB=4cm,
在Rt△ABC中,BC==4cm,∵AD=BC,∴AD的長為4cm.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,任意四邊形ABCD,對(duì)角線AC、BD交于O點(diǎn),過各頂點(diǎn)分別作對(duì)角線AC、BD的平行線,四條平行線圍成一個(gè)四邊形EFGH.試想當(dāng)四邊形ABCD的形狀發(fā)生改變時(shí),四邊形EFGH的形狀會(huì)有哪些變化?完成以下題目:

(1)當(dāng)ABCD為任意四邊形時(shí),EFGH為________________;
當(dāng)ABCD為矩形時(shí),EFGH為________________;
當(dāng)ABCD為菱形時(shí),EFGH為________________;
當(dāng)ABCD為正方形時(shí),EFGH為________________;
當(dāng)EFGH是矩形時(shí),ABCD為________________;
當(dāng)EFGH是菱形時(shí),ABCD為________________;
當(dāng)EFGH是正方形時(shí),ABCD為________________.
(2)請(qǐng)選擇(1)中任意一個(gè)你所寫的結(jié)論進(jìn)行證明.
(3)反之,當(dāng)用上述方法所圍成的平行四邊形EFGH分別是矩形、菱形時(shí),相應(yīng)的原四邊形ABCD必須滿足怎樣的條件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,過點(diǎn)C的直線CE⊥AB,垂足為E,若∠EAD=53°,則∠BCE的度數(shù)為【   】
    
A.53°B.37°C.47°D.123°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AB=2BC,N為DC的中點(diǎn),點(diǎn)M在DC上,且AM=AB,則∠MBN的度數(shù)為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD中,AD//BC,AB=CD,對(duì)角線AC、BD交于點(diǎn)O,ACBD,E、F、G、H分別為AB、BC、CD、DA的中點(diǎn)
(1)求證:四邊形EFGH為正方形;
(2)若AD=2,BC=4,求四邊形EFGH的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形ABCD中,E、F、G、H依次是各邊中點(diǎn),O是形內(nèi)一點(diǎn),若S四邊形AEOH=3,S四邊形BFOE=4,S四邊形CGOF=5,則S四邊形DHOG=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,

問題1:如圖1,P為AB邊上的一點(diǎn),以PD,PC為邊作平行四邊形PCQD,請(qǐng)問對(duì)角線PQ,DC的長能否相等,為什么?
問題2:如圖2,若P為AB邊上一點(diǎn),以PD,PC為邊作平行四邊形PCQD,請(qǐng)問對(duì)角線PQ的長是否存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說明理由.
問題3:若P為AB邊上任意一點(diǎn),延長PD到E,使DE=PD,再以PE,PC為邊作平行四邊形PCQE,請(qǐng)?zhí)骄繉?duì)角線PQ的長是否也存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說明理由.
問題4:如圖3,若P為DC邊上任意一點(diǎn),延長PA到E,使AE=nPA(n為常數(shù)),以PE、PB為邊作平行四邊形PBQE,請(qǐng)?zhí)骄繉?duì)角線PQ的長是否也存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:正方形OABC的邊OC、OA分別在x、y軸的正半軸上,設(shè)點(diǎn)B(4,4),點(diǎn)P(t,0)是x軸上一動(dòng)點(diǎn),過點(diǎn)O作OH⊥AP于點(diǎn)H,直線OH交直線BC于點(diǎn)D,連AD。
(1)如圖1,當(dāng)點(diǎn)P在線段OC上時(shí),求證:OP=CD;
(2)在點(diǎn)P運(yùn)動(dòng)過程中,△AOP與以A、B、D為頂點(diǎn)的三角形相似時(shí),求t的值;
(3)如圖2,拋物線y=-x2+x+4上是否存在點(diǎn)Q,使得以P、D、Q、C為頂點(diǎn)的四邊形為平行四邊形,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,ADBC,BE平分∠ABC且交CDEECD的中點(diǎn),EFBCABF,EGABBCG,當(dāng),時(shí),四邊形BGEF的周長為  

查看答案和解析>>

同步練習(xí)冊(cè)答案