(2009•孝感)如圖,點(diǎn)M是△ABC內(nèi)一點(diǎn),過點(diǎn)M分別作直線平行于△ABC的各邊,所形成的三個(gè)小三角形△1,△2,△3(圖中陰影部分)的面積分別是4,9和49.則△ABC的面積是   
【答案】分析:根據(jù)平行可得出三個(gè)三角形相似,再由它們的面積比得出相似比,設(shè)其中一邊為一求知數(shù),然后計(jì)算出最大的三角形與最小的三角形的相似比,從而求面積比.
解答:解:過M作BC平行線交AB、AC于D、E,過M作AC平行線交AB、BC于F、H,過M作AB平行線交AC、BC于I、G,
∵△1、△2的面積比為4:9,△1、△3的面積比為4:49,
∴它們邊長(zhǎng)比為2:3:7,
又∵四邊形BDMG與四邊形CEMH為平行四邊形,
∴DM=BG,EM=CH,
設(shè)DM為2x,
∴BC=(BG+GH+CH)=12x,
∴BC:DM=6:1,
S△ABC:S△FDM=36:1,
∴S△ABC=4×36=144.
故答案為:144.
點(diǎn)評(píng):本題主要考查了相似三角形的性質(zhì),相似三角形面積的比等于相似比的平方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年廣東省初中畢業(yè)生學(xué)業(yè)考試數(shù)學(xué)試卷(十一)(解析版) 題型:解答題

(2009•孝感)如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點(diǎn)P是圓外一點(diǎn),PA切⊙O于點(diǎn)A,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)已知PA=,BC=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省莆田市中考數(shù)學(xué)仿真模擬試卷(二)(解析版) 題型:解答題

(2009•孝感)如圖,點(diǎn)P是雙曲線(k1<0,x<0)上一動(dòng)點(diǎn),過點(diǎn)P作x軸、y軸的垂線,分別交x軸、y軸于A、B兩點(diǎn),交雙曲線y=(0<k2<|k1|)于E、F兩點(diǎn).
(1)圖1中,四邊形PEOF的面積S1=______(用含k1、k2的式子表示);
(2)圖2中,設(shè)P點(diǎn)坐標(biāo)為(-4,3).
①判斷EF與AB的位置關(guān)系,并證明你的結(jié)論;
②記S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省孝感市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•孝感)如圖,點(diǎn)P是雙曲線(k1<0,x<0)上一動(dòng)點(diǎn),過點(diǎn)P作x軸、y軸的垂線,分別交x軸、y軸于A、B兩點(diǎn),交雙曲線y=(0<k2<|k1|)于E、F兩點(diǎn).
(1)圖1中,四邊形PEOF的面積S1=______(用含k1、k2的式子表示);
(2)圖2中,設(shè)P點(diǎn)坐標(biāo)為(-4,3).
①判斷EF與AB的位置關(guān)系,并證明你的結(jié)論;
②記S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省孝感市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•孝感)如圖,將放置于平面直角坐標(biāo)系中的三角板AOB繞O點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,則B′點(diǎn)的坐標(biāo)為( )

A.(,
B.(,
C.(,
D.(,

查看答案和解析>>

同步練習(xí)冊(cè)答案