【題目】如圖,已知AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,ADEF于點D,∠DAC=∠BAC

(1)求證:EF是⊙O的切線;

(2)求證:AC2=AD·AB

(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.

【答案】(1)證明見解析;(2)證明見解析;(3

【解析】試題分析:(1)連接OC,根據(jù)OA=OC推出∠BAC=∠OCA=∠DAC,推出OC∥AD,得出OC⊥EF,根據(jù)切線的判定推出即可;

2)證△ADC∽△ACB,得出比例式,即可推出答案;

3)求出等邊三角形OAC,求出AC、∠AOC,在Rt△ACD中,求出AD、CD,求出梯形OCDA和扇形OCA的面積,相減即可得出答案.

試題解析:(1)證明:連接OC,

∵OA=OC,

∴∠BAC=∠OCA,

∵∠DAC=∠BAC,

∴∠OCA=∠DAC,

∴OC∥AD,

∵AD⊥EF,

∴OC⊥EF,

∵OC為半徑,

∴EF⊙O的切線.

2)證明:連接BC,

∵AB⊙O直徑,AD⊥EF,

∴∠BCA=∠ADC=90°

∵∠DAC=∠BAC,

∴△ACB∽△ADC

∴AC2=ADAB

3)解:∵∠ACD=30°,∠OCD=90°,

∴∠OCA=60°,

∵OC=OA,

∴△OAC是等邊三角形,

∴AC=OA=OC=2,∠AOC=60°,

RtACD中,AD=AC=×2=1,

由勾股定理得:DC=,

陰影部分的面積是S=S梯形OCDA-S扇形OCA=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bx經(jīng)過A(2,0),B(3,-3)兩點,拋物線的頂點為C,動點P在直線OB上方的拋物線上,過點P作直線PMy軸,交x軸于M,交OBN,設(shè)點P的橫坐標(biāo)為m

1求拋物線的解析式及點C的坐標(biāo);

2當(dāng)△PON為等腰三角形時,點N的坐標(biāo)為 ;當(dāng)PMOCOB時,點P的坐標(biāo)為 (直接寫出結(jié)果)

(3)直線PN能否將四邊形ABOC分為面積比為1:2的兩部分?若能,請求出m的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O為△ABC的外接圓,BC為直徑,點E在AB上,過點E作EF⊥BC,點G在FE的延長線上,且GA=GE.

(1) 求證:AG與⊙O相切;

(2)AC5,AB12,BE,求線段OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個人患了流感,經(jīng)過兩輪傳染后新增120個人患了流感,則每輪傳染中平均一個流感患者傳染人的個數(shù)為( )

A.60B.40C.10D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寒假結(jié)束了,為了了解九年級學(xué)生寒假體育鍛煉情況,王老師調(diào)查了九年級所有學(xué)生寒假體育鍛煉時間,并隨即抽取10名學(xué)生進行統(tǒng)計,制作出如下統(tǒng)計圖表:

編號

成績

編號

成績

B

A

A

B

B

C

B

B

C

A

根據(jù)統(tǒng)計圖表信息解答下列問題:

(1)將條形統(tǒng)計圖補充完整;

(2)若用扇形統(tǒng)計圖來描述10名學(xué)生寒假體育鍛煉情況,分別求A,B,C三個等級對應(yīng)的扇形圓心角的度數(shù);

(3)已知這次統(tǒng)計中共有60名學(xué)生寒假體育鍛煉時間是A等,請你估計這次統(tǒng)計中B等,C等的學(xué)生各有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,已知某容器是由上下兩個相同的圓錐和中間一個與圓錐同底等高的圓柱組合而成,若往此容器中注水,設(shè)注入水的體積為y,高度為x,則y關(guān)于x的函數(shù)圖像大致是()

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖反映的過程是:小強從家去菜地澆水,又去玉米地除草,然后回家.如果菜地和玉米地的距離為a千米,小強在玉米地除草比在菜地澆水多用的時間為b分鐘,則a,b的值分別為( )

A.1.1,8
B.0.9,3
C.1.1,12
D.0.9,8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,DE 是⊙O的切線,連結(jié)OD,OE

(1)求證:∠DEA=90°;

(2)若BC=4,寫出求 △OEC的面積的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14,動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為t(t>0)秒.

(1)(1)點B表示的數(shù)為 , 點P表示的數(shù)為(用含t的式子表示);
(2)動點H從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P,H同時出發(fā),問點P運動多少秒時追上點H?

查看答案和解析>>

同步練習(xí)冊答案