【題目】問題情境
在綜合與實踐課上,老師讓同學(xué)們以“兩條平行線AB,CD和一塊含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”為主題開展數(shù)學(xué)活動.
操作發(fā)現(xiàn)
(1)如圖(1),小明把三角尺的60°角的頂點G放在CD上,若∠2=2∠1,求∠1的度數(shù);
(2)如圖(2),小穎把三角尺的兩個銳角的頂點E、G分別放在AB和CD上,請你探索并說明∠AEF與∠FGC之間的數(shù)量關(guān)系;
結(jié)論應(yīng)用
(3)如圖(3),小亮把三角尺的直角頂點F放在CD上,30°角的頂點E落在AB上.若∠AEG=α,則∠CFG等于______(用含α的式子表示).
【答案】(1)∠1=40°;(2)∠AEF+∠GFC=90°;(3)60°﹣α.
【解析】
(1)依據(jù)AB∥CD,可得∠1=∠EGD,再根據(jù)∠2=2∠1,∠FGE=60°,即可得出∠EGD(180°﹣60°)=40°,進(jìn)而得到∠1=40°;
(2)根據(jù)AB∥CD,可得∠AEG+∠CGE=180°,再根據(jù)∠FEG+∠EGF=90°,即可得到∠AEF+∠GFC=90°;
(3)根據(jù)AB∥CD,可得∠AEF+∠CFE=180°,再根據(jù)∠GFE=90°,∠GEF=30°,∠AEG=α,即可得到∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.
(1)如圖1.
∵AB∥CD,∴∠1=∠EGD.
又∵∠2=2∠1,∴∠2=2∠EGD.
又∵∠FGE=60°,∴∠EGD(180°﹣60°)=40°,∴∠1=40°;
(2)如圖2.
∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.
又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;
(3)如圖3.
∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.
又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.
故答案為:60°﹣α.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且與EF交于點O,那么與∠AOE相等的角有( )
A. 6個B. 5個C. 4個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[知識生成]通常,用兩種不同的方法計算同一個圖形的面積,可以得到一個恒等式.例如:如圖①是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的形狀拼成一個正方形.請解答下列問題:
(1)圖②中陰影部分的正方形的邊長是________________;
(2)請用兩種不同的方法求圖②中陰影部分的面積:
方法1:________________________;方法2:_______________________;
(3)觀察圖②,請你寫出、、之間的等量關(guān)系是__________;
(4)根據(jù)(3)中的等量關(guān)系解決如下問題:若,,則=________;
[知識遷移]
類似地,用兩種不同的方法計算同一幾何體的體積,也可以得到一個恒等式.
(5)根據(jù)圖③,寫出一個代數(shù)恒等式:____________________________;
(6)已知,,利用上面的規(guī)律求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長和是( )
A. 4nB. 4mC. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點O是AC的中點,AC=2AB,延長AB至G,使BG=AB,連接GO交BC于E,延長GO交AD于F,連接AE.
求證:(1)△ABC≌△AOG;
(2)猜測四邊形AECF的形狀并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,△ABD沿AD方向平移得△A1B1D1 , 點A1在AD邊上,A1B1與BD交于點E,D1B1與CD交于點F.
(1)求證:四邊形EB1FD是平行四邊形;
(2)若AB=3,BC=4,AA1=1,求B1F的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=2x+4
(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象;
2)求圖象與x軸的交點A的坐標(biāo),與y軸交點B的坐標(biāo);
(3)在(2)的條件下,求出△AOB的面積;
(4)利用圖象直接寫出:當(dāng)y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:,OB、OC、OM、ON是內(nèi)的射線.
如圖1,若OM平分,ON平分當(dāng)OB繞點O在內(nèi)旋轉(zhuǎn)時,則的大小為______;
如圖2,若,OM平分,ON平分當(dāng)繞點O在內(nèi)旋轉(zhuǎn)時,求的大小;
在的條件下,若,當(dāng)在內(nèi)繞著點O以秒的速度逆時針旋轉(zhuǎn)t秒時,和中的一個角的度數(shù)恰好是另一個角的度數(shù)的兩倍,求t的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com