精英家教網(wǎng)如圖,正方形網(wǎng)格中的△ABC,若小方格邊長(zhǎng)為1,請(qǐng)你根據(jù)所學(xué)的知識(shí)
(1)求△ABC的面積.
(2)判斷△ABC是什么形狀?并說(shuō)明理由.
分析:(1)用長(zhǎng)方形的面積減去三個(gè)小三角形的面積即可求出△ABC的面積.
(2)根據(jù)勾股定理求得△ABC各邊的長(zhǎng),再利用勾股定理的逆定理進(jìn)行判定,從而不難得到其形狀.
解答:解:(1)△ABC的面積=4×8-1×8÷2-2×3÷2-6×4÷2=13.
故△ABC的面積為13;

(2)∵正方形小方格邊長(zhǎng)為1
∴AC=
12+82
=
65
,AB=
32+22
=
13
,BC=
62+42
=2
13
,
∵在△ABC中,AB2+BC2=13+52=65,AC2=65,
∴AB2+BC2=AC2,
∴網(wǎng)格中的△ABC是直角三角形.
點(diǎn)評(píng):考查了三角形的面積,勾股定理和勾股定理的逆定理,解答此題要用到勾股定理的逆定理:已知三角形ABC的三邊滿(mǎn)足a2+b2=c2,則三角形ABC是直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都為1,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫(huà)出圖形.
(1)三邊長(zhǎng)分別為3,2
2
,
5
的三角形;
(2)一銳角為45°,面積為6的平行四邊形;
(3)周長(zhǎng)為20,面積為24的菱形.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).
(1)請(qǐng)?jiān)趫D(1)中作一個(gè)格點(diǎn)鈍角三角形;
(2)請(qǐng)?jiān)趫D(2)作一個(gè)四邊長(zhǎng)均為無(wú)理數(shù)且是軸對(duì)稱(chēng)圖形的格點(diǎn)四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫(huà)三角形.
(1)在圖1中,畫(huà)一個(gè)三角形,使它的三邊長(zhǎng)都是無(wú)理數(shù);
(2)在圖2中,畫(huà)出一個(gè)直角三角形,使它的三邊長(zhǎng)都是整數(shù);
(3)在圖3中,畫(huà)出一個(gè)中心對(duì)稱(chēng)圖形.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)先化簡(jiǎn),再求值:x(x-2)-(x+1)(x-1),其中x=10.
(2)已知x=
3
-1
,求代數(shù)式(x+1)2-4(x+1)+4的值.
(3)如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫格點(diǎn),請(qǐng)?jiān)诮o定的網(wǎng)格中按要求畫(huà)圖:
①?gòu)狞c(diǎn)A出發(fā)在圖中畫(huà)一條線(xiàn)段AB,使得AB=
20
;
②畫(huà)出一個(gè)以(1)中的AB為斜邊的等腰直角三角形,使三角形的三個(gè)頂點(diǎn)都在格點(diǎn)上,并根據(jù)所畫(huà)圖形求出等腰直角三角形的腰長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).△ABO的三個(gè)頂點(diǎn)A,B,O都在格點(diǎn)上.
(1)畫(huà)出△ABO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的三角形△A′B′O;
(2)根據(jù)所畫(huà)的圖找出A′點(diǎn)和B′點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案