如圖,AB為⊙O直徑,CD為弦,AB⊥CD,如果∠BOC=70°,那么∠A的度數(shù)為( )
A.70°
B.35°
C.30°
D.20°
【答案】分析:由于直徑AB⊥CD,由垂徑定理知B是的中點(diǎn),進(jìn)而可根據(jù)等弧所對(duì)的圓心角和圓周角的數(shù)量關(guān)系求得∠A的度數(shù).
解答:解:∵直徑AB⊥CD,
∴B是的中點(diǎn);
∴∠A=∠BOC=35°;
故選B.
點(diǎn)評(píng):此題主要考查的是垂徑定理和圓周角定理的綜合應(yīng)用,理解等弧所對(duì)的圓周角是圓心角的一半是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖,AB為直徑,∠BED=40°,則∠ACD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為⊙O直徑,CD為弦,且CD⊥AB,垂足為H.
(1)∠OCD的平分線CE交⊙O于E,連接OE.求證:E為
ADB
的中點(diǎn);
(2)如果⊙O的半徑為1,CD=
3

①求O到弦AC的距離;
②填空:此時(shí)圓周上存在
 
個(gè)點(diǎn)到直線AC的距離為
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為⊙O直徑,BC切⊙O于B,CO交⊙O交于D,AD的延長(zhǎng)線交BC于E,若∠C=25°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為⊙O直徑,BC切⊙O于B,CO交⊙O交于D,AD的延長(zhǎng)線交BC于E,若∠C=20°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為⊙O直徑,BC與半徑OD垂直于點(diǎn)C,∠B=28°,則∠A的度數(shù)為
31
31
度.

查看答案和解析>>

同步練習(xí)冊(cè)答案