如圖,在中,,,,AF=10cm, AC=14cm,動點E以2cm/s的速度從點向點運動,動點以1cm/s的速度從點向點運動,當一個點到達終點時,另一個點隨之停止運動,設運動時間為t.
(1)求證:在運動過程中,不管t取何值,都有;
(2)當t取何值時,與全等;
(3)在(2)的前提下,若,,求。
(1)證明見解析;(2);(3).
【解析】
試題分析:(1)由角平分線的性質(zhì)可知DF=DM,所以△AED和△DEG的面積轉(zhuǎn)化為底AE和CG的比值,根據(jù)路程=速度×時間求出AE和CG的長度即可證明在運動過程中,不管取何值,都有S△AED=2S△DGC.
(2)若△DFE與△DMG全等,則EF=MG,利用已知條件求出EF和MG的長度,建立方程解方程即可求出運動的時間.
(3)利用等高三角形的面積比等于對應底的比,即可求得答案.
試題解析:(1)證明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,
∴DF=DM,
∵S△AED=AE•DF,S△DGC=CG•DM,
∴,
∵點E以2cm/s的速度從A點向F點運動,動點G以1cm/s的速度從C點向A點運動,
∴AE=2tcm,CG=tcm,
∴,即,
∴在運動過程中,不管取何值,都有S△AED=2S△DGC.
(2)解:設時間為t時,△DFE與△DMG全等,則EF=MG
①當M在線段CG的延長線上時,
∵點E以2cm/s的速度從A點向F點運動,動點G以1cm/s的速度從C點向A點運動,
∴EF=AF-AE=10-2t,MG=AC-CG-AM=4-t,
即10-2t=4-t,
解得:t=6,
當t=6時,MG=-2,所以舍去;
②當M在線段CG上時,
∵點E以2cm/s的速度從A點向F點運動,動點G以1cm/s的速度從C點向A點運動,
∴EF=AF-AE=10-2t(cm),MG=AM-(AC-CG)=t-4(cm),
即10-2t=t-4,
解得:t=,
綜上所述當t=時,△DFE與△DMG全等.
(3)∵t=,
∴AE=2t=(cm),
∵DF=DM,
∴S△ABD:S△ACD=AB:AC=BD:CD=119:126,
∵AC=14cm,
∴AB=(cm),
∴BF=AB-AF=-10=(cm),
∵S△ADE:S△BDF=AE:BF=:,S△AED=28cm2,
∴S△BDF=(cm2).
考點: 1.全等三角形的判定與性質(zhì);2.三角形的面積;3.角平分線的性質(zhì).
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com