如圖1,點O為直線AB上一點,過O點作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O按逆時針方向旋轉至圖2的位置,使得ON落在射線OB上,此時三角板旋轉的角度為
90
90
度;
(2)繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉至圖3的位置,使得ON在∠AOC的內部.試探究∠AOM與∠NOC之間滿足什么等量關系,并說明理由;
(3)在上述直角三角板從圖1旋轉到圖3的位置的過程中,若三角板繞點O按15°每秒的速度旋轉,當直角三角板的直角邊ON所在直線恰好平分∠AOC時,求此時三角板繞點O的運動時間t的值.
分析:(1)根據(jù)旋轉的性質知,旋轉角是∠MON;
(2)如圖3,利用平角的定義,結合已知條件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性質、圖中角與角間的數(shù)量關系推知∠AOM-∠NOC=30°;
(3)需要分類討論:(ⅰ)當直角邊ON在∠AOC外部時,旋轉角是60°;(ⅱ)當直角邊ON在∠AOC內部時,旋轉角是240°.
解答:解:(1)由旋轉的性質知,旋轉角∠MON=90°.
故答案是:90;

(2)如圖3,∠AOM-∠NOC=30°.
設∠AOC=α,由∠AOC:∠BOC=1:2可得
∠BOC=2α.
∵∠AOC+∠BOC=180°,
∴α+2α=180°.
解得 α=60°.
即∠AOC=60°.
∴∠AON+∠NOC=60°.①
∵∠MON=90°,
∴∠AOM+∠AON=90°.②
 由②-①,得∠AOM-∠NOC=30°;

(3)(。┤鐖D4,當直角邊ON在∠AOC外部時,
由OD平分∠AOC,可得∠BON=30°.
因此三角板繞點O逆時針旋轉60°.
此時三角板的運動時間為:
t=60°÷15°=4(秒).
(ⅱ)如圖5,當直角邊ON在∠AOC內部時,
由ON平分∠AOC,可得∠CON=30°.
因此三角板繞點O逆時針旋轉240°.
此時三角板的運動時間為:
t=240°÷15°=16(秒).
點評:本題綜合考查了旋轉的性質,角的計算.解答(3)題時,需要分類討論,以防漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉至圖2,使一邊OM在∠BOC的內部,且恰好平分∠BOC.問:此時直線ON是否平分∠AOC?請說明理由.
(2)將圖1中的三角板繞點O以每秒6°的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為
10或40
(直接寫出結果).
(3)將圖1中的三角板繞點O順時針旋轉至圖3,使ON在∠AOC的內部,求∠AOM-∠NOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,拋物線y=ax2-4ax+b經(jīng)過點A(1,0),與x軸交于點B,與y軸交于點C,且OB=OC.
精英家教網(wǎng)
(1)求拋物線的解析式;
(2)將△OAC沿AC翻折得到△ACE,直線AE交拋物線于點P,求點P的坐標;
(3)如圖2,點M為直線BC上一點(不與B、C重合),連OM,將OM繞O點旋轉90°,得到線段ON,是否存在這樣的點N,使點N恰好在拋物線上?若存在,求出點N的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•湖州)如圖①,O為坐標原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB=
4
5
,反比例函數(shù)y=
k
x
(k>0)在第一象限內的圖象經(jīng)過點A,與BC交于點F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點F為BC的中點,且△AOF的面積S=12,求OA的長和點C的坐標;
(3)在(2)中的條件下,過點F作EF∥OB,交OA于點E(如圖②),點P為直線EF上的一個動點,連接PA,PO.是否存在這樣的點P,使以P、O、A為頂點的三角形是直角三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,拋物線y=ax2+4x+b經(jīng)過點A(1,0),B(3,0),與y軸交于點C;
(1)求拋物線的解析式;
(2)將△OAC沿AC翻折得到△ACE,直線AE交拋物線于點P,求點P的坐標;
(3)如圖2,點M為直線BC上一點(不與B、C重合),在拋物線上是否存在這樣的點N,使三點O,M,N構成以O為直角頂點的等腰直角三角形?若存在,求出點N的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案