如圖所示是二次函數(shù)y=-x2+4x圖象上的一段,其中0≤x≤4、若矩形ABCD的兩個(gè)頂點(diǎn)A,B落在x軸上,另外兩個(gè)頂點(diǎn)C,D落在函數(shù)圖象上,則矩形ABCD的周長(zhǎng)能否恰好為8?若能,請(qǐng)求出C,D兩點(diǎn)坐標(biāo);若不能,請(qǐng)說明理由.
假設(shè)周長(zhǎng)恰好是8,設(shè)點(diǎn)A的橫坐標(biāo)為x,
∵y=-x2+4x,
∴頂點(diǎn)橫坐標(biāo)為-
4
2×(-1)
=2,
∴點(diǎn)B的橫坐標(biāo)為2+(2-x)=4-x,
∴AB=4-x-x=4-2x;
∴D點(diǎn)縱坐標(biāo)為-x2+4x,
即AD=-x2+4x;
∴AD+AB=-x2+4x+(4-2x)=
1
2
×8,
∴x=0或2;
∴當(dāng)x=0時(shí),-x2+4x=0,D和C點(diǎn)縱坐標(biāo)為0,構(gòu)不成矩形.
∴當(dāng)x=2時(shí),-x2+4x=4,只有一個(gè)最高點(diǎn)存在,同樣構(gòu)不成矩形,
綜合可知,與能構(gòu)成矩形矛盾,故不存在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某大學(xué)的校門是一拋物線水泥建筑物,大門的地面寬度為6米,兩側(cè)距地面2米高處各有一個(gè)掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為4米,則校門的高為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點(diǎn),與y軸交于A點(diǎn).
(1)根據(jù)圖象確定a、b、c的符號(hào),并說明理由;
(2)如果點(diǎn)A的坐標(biāo)為(0,-3),∠ABC=45°,∠ACB=60°,求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+4x+3交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(-1,0).
(1)求拋物線的對(duì)稱軸及點(diǎn)A的坐標(biāo);
(2)在平面直角坐標(biāo)系xoy中是否存在點(diǎn)P,與A、B、C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請(qǐng)寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)連接CA與拋物線的對(duì)稱軸交于點(diǎn)D,在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請(qǐng)求出直線CM的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,⊙O1和⊙O2外切于點(diǎn)C,AB是⊙O1和⊙O2的外公切線,A、B為切點(diǎn),且∠ACB=90°.以AB所在直線為軸,過點(diǎn)C且垂直于AB的直線為軸建立直角坐標(biāo)系,已知AO=4,OB=1.
(1)分別求出A、B、C各點(diǎn)的坐標(biāo);
(2)求經(jīng)過A、B、C三點(diǎn)的拋物線y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問這條拋物線的頂點(diǎn)是否落在兩圓連心線O1O2上?如果在,請(qǐng)證明;如果不在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中,拋物線y=x2-x-2過A、B、C三點(diǎn),在對(duì)稱軸上存在點(diǎn)P,以P、A、C為頂
點(diǎn)三角形為直角三角形.則點(diǎn)P的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

世紀(jì)廣場(chǎng)中心標(biāo)志性建筑處有高低不同的各種噴泉,其中一支高度為1米的噴水管,噴水最高點(diǎn)A離地面為3米.此時(shí)A點(diǎn)離噴水口水平距離為
1
2
米,在如圖所示直角坐標(biāo)系中,這支噴泉的函數(shù)關(guān)系式是______.(不要求指出自變量x的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

涪陵榨菜是重慶市農(nóng)村經(jīng)濟(jì)中產(chǎn)銷規(guī)模最大、品牌知名度最高、輻射帶動(dòng)能力最強(qiáng)的特色支柱產(chǎn)業(yè).某知名榨菜企業(yè)為順應(yīng)市場(chǎng)需求推出了“五味榨菜”禮盒,成本為20元/盒.年銷售量y(萬(wàn)盒)與售價(jià)x(元/盒)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)結(jié)合圖象求y與x之間的函數(shù)關(guān)系;
(2)求“五味榨菜”禮盒的年獲利w(萬(wàn)元)與x之間的函數(shù)關(guān)系,并求當(dāng)售價(jià)為多少元時(shí)可以獲得最大利潤(rùn),最大利潤(rùn)是多少萬(wàn)元?
(3)去年,公司一直按照(2)中獲得最大利潤(rùn)時(shí)的售價(jià)進(jìn)行銷售,今年在保持售價(jià)不變的基礎(chǔ)上,公司發(fā)力品牌營(yíng)銷,決定拿出部分資金進(jìn)行廣告宣傳.經(jīng)調(diào)查發(fā)現(xiàn):①每年有11萬(wàn)盒產(chǎn)品供給固定客戶,其余產(chǎn)品全部被潛在客房購(gòu)買;②若廣告投入為a萬(wàn)元,則潛在客戶的購(gòu)買量將是去年購(gòu)買量的m倍,則m=-
1
900
(a-30)2+2
;③受公司生產(chǎn)規(guī)模及資金限制,公司的年產(chǎn)量不超過28萬(wàn)盒,廣告投入不超過32萬(wàn)元.問公司在廣告上投入多少資金可以使公司獲得最大利潤(rùn),最大利潤(rùn)為多少萬(wàn)元?(利潤(rùn)=總銷售額-總成本-廣告費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

用長(zhǎng)8m的鋁合金條制成如圖形狀的矩形窗框,使窗戶的透光面積最大,那么這個(gè)窗戶的最大透光面積是( 。
A.
64
25
m2
B.
4
3
m2
C.
8
3
m2
D.4m2

查看答案和解析>>

同步練習(xí)冊(cè)答案