如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A、B、C.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線(xiàn)上的動(dòng)點(diǎn),其坐標(biāo)為t,
①設(shè)拋物線(xiàn)對(duì)稱(chēng)軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD得面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
(1)
(2)①P點(diǎn)的坐標(biāo)為:(﹣1,4)或(﹣2,3)。
②當(dāng)t=﹣時(shí),S△PCD的最大值為。
解析分析:(1)先求出A、B、C的坐標(biāo),再運(yùn)用待定系數(shù)法就可以直接求出二次函數(shù)的解析式。
(2)①由(1)的解析式可以求出拋物線(xiàn)的對(duì)稱(chēng)軸,分類(lèi)討論當(dāng)∠CEF=90°時(shí),當(dāng)∠CFE=90°時(shí),根據(jù)相似三角形的性質(zhì)就可以求出P點(diǎn)的坐標(biāo)。
②先運(yùn)用待定系數(shù)法求出直線(xiàn)CD的解析式,設(shè)PM與CD的交點(diǎn)為N,根據(jù)CD的解析式表示出點(diǎn)N的坐標(biāo),再根據(jù)S△PCD=S△PCN+S△PDN就可以表示出三角形PCD的面積,運(yùn)用頂點(diǎn)式就可以求出結(jié)論。
解:(1)在Rt△AOB中,OA=1,,∴OB=3OA=3.。
∵△DOC是由△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°而得到的,
∴△DOC≌△AOB!郞C=OB=3,OD=OA=1。
∴A、B、C的坐標(biāo)分別為(1,0),(0,3)(﹣3,0).
代入解析式得,解得:。
∴拋物線(xiàn)的解析式為。
(2)①∵,∴對(duì)稱(chēng)軸l為x=﹣1。
∴E點(diǎn)的坐標(biāo)為(﹣1,0)。
當(dāng)∠CEF=90°時(shí),△CEF∽△COD.此時(shí)點(diǎn)P在對(duì)稱(chēng)軸上,即點(diǎn)P為拋物線(xiàn)的頂點(diǎn),P(﹣1,4)。
當(dāng)∠CFE=90°時(shí),△CFE∽△COD,過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,則△EFC∽△EMP。
∴!郙P=3EM.。
∵P的橫坐標(biāo)為t,∴P(t,)。
∵P在二象限,∴PM=,EM=,
∴,解得:t1=﹣2,t2=﹣3(與C重合,舍去)。
∴t=﹣2時(shí),。
∴P(﹣2,3)。
綜上所述,當(dāng)△CEF與△COD相似時(shí),P點(diǎn)的坐標(biāo)為:(﹣1,4)或(﹣2,3)。
②設(shè)直線(xiàn)CD的解析式為y=kx+b,由題意,得
,解得:。
∴直線(xiàn)CD的解析式為:y=x+1。
設(shè)PM與CD的交點(diǎn)為N,則點(diǎn)N的坐標(biāo)為(t,t+1),∴NM=t+1。
∴。
∵S△PCD=S△PCN+S△PDN,
∴。
∴當(dāng)t=﹣時(shí),S△PCD的最大值為。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知M1(3,2),N1(5,﹣1),線(xiàn)段M1N1平移至線(xiàn)段MN處(注:M1與M,N1與N分別為對(duì)應(yīng)點(diǎn)).
(1)若M(﹣2,5),請(qǐng)直接寫(xiě)出N點(diǎn)坐標(biāo).
(2)在(1)問(wèn)的條件下,點(diǎn)N在拋物線(xiàn)上,求該拋物線(xiàn)對(duì)應(yīng)的函數(shù)解析式.
(3)在(2)問(wèn)條件下,若拋物線(xiàn)頂點(diǎn)為B,與y軸交于點(diǎn)A,點(diǎn)E為線(xiàn)段AB中點(diǎn),點(diǎn)C(0,m)是y軸負(fù)半軸上一動(dòng)點(diǎn),線(xiàn)段EC與線(xiàn)段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)問(wèn)條件下,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿x軸正方向勻速運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到什么位置時(shí)(即BP長(zhǎng)為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時(shí)的△ABP面積的,求此時(shí)BP的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線(xiàn)y=﹣(x﹣1)2+c與x軸交于A(yíng),B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).
(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說(shuō)明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知:△ABC為邊長(zhǎng)是的等邊三角形,四邊形DEFG為邊長(zhǎng)是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線(xiàn)上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿EF方向向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動(dòng),設(shè)△ABC的運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請(qǐng)直接寫(xiě)出S與t之間的函數(shù)關(guān)系式;
(2)如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作∠ABE的角平分線(xiàn)BM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線(xiàn)段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請(qǐng)求出線(xiàn)段EH的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
(3)如圖3,若四邊形DEFG為邊長(zhǎng)為的正方形,△ABC的移動(dòng)速度為每秒個(gè)單位長(zhǎng)度,其余條件保持不變.△ABC開(kāi)始移動(dòng)的同時(shí),Q點(diǎn)從F點(diǎn)開(kāi)始,沿折線(xiàn)FG﹣GD以每秒個(gè)單位長(zhǎng)度開(kāi)始移動(dòng),△ABC停止運(yùn)動(dòng)時(shí),Q點(diǎn)也停止運(yùn)動(dòng).設(shè)在運(yùn)動(dòng)過(guò)程中,DE交折線(xiàn)BA﹣AC于P點(diǎn),則是否存在t的值,使得PC⊥EQ,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)(a,b是常數(shù))的圖象與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0),與y軸交于點(diǎn)C.動(dòng)直線(xiàn)y=t(t為常數(shù))與拋物線(xiàn)交于不同的兩點(diǎn)P、Q.
(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)的頂點(diǎn)A(2,0),與y軸的交點(diǎn)為B(0,-1).
(1)求拋物線(xiàn)的解析式;
(2)在對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)上找出一點(diǎn)C,使以BC為直徑的圓經(jīng)過(guò)拋物線(xiàn)的頂點(diǎn)A.并求出點(diǎn)C的坐標(biāo)以及此時(shí)圓的圓心P點(diǎn)的坐標(biāo).
(3)在(2)的基礎(chǔ)上,設(shè)直線(xiàn)x=t(0<t<10)與拋物線(xiàn)交于點(diǎn)N,當(dāng)t為何值時(shí),△BCN的面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
我們知道,經(jīng)過(guò)原點(diǎn)的拋物線(xiàn)解析式可以是。
(1)對(duì)于這樣的拋物線(xiàn):
當(dāng)頂點(diǎn)坐標(biāo)為(1,1)時(shí),a= ;
當(dāng)頂點(diǎn)坐標(biāo)為(m,m),m≠0時(shí),a 與m之間的關(guān)系式是 ;
(2)繼續(xù)探究,如果b≠0,且過(guò)原點(diǎn)的拋物線(xiàn)頂點(diǎn)在直線(xiàn)上,請(qǐng)用含k的代數(shù)式表示b;
(3)現(xiàn)有一組過(guò)原點(diǎn)的拋物線(xiàn),頂點(diǎn)A1,A2,…,An在直線(xiàn)上,橫坐標(biāo)依次為1,2,…,n(n為正整數(shù),且n≤12),分別過(guò)每個(gè)頂點(diǎn)作x軸的垂線(xiàn),垂足記為B1,B2,B3,…,Bn,以線(xiàn)段AnBn為邊向右作正方形AnBnCnDn,若這組拋物線(xiàn)中有一條經(jīng)過(guò)點(diǎn)Dn,求所有滿(mǎn)足條件的正方形邊長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
矩形的面積一定,則它的長(zhǎng)和寬的關(guān)系是( 。
A.正比例函數(shù) | B.一次函數(shù) | C.反比例函數(shù) | D.二次函數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
點(diǎn)(-1,y1),(2,y2),(3,y3)均在函數(shù)y=的圖象上,則y1,y2,y3的大小關(guān)系是( )
A.y3<y2<y1 | B.y2<y3<y1 |
C.y1<y2<y3 | D.y1<y3<y2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com