如圖,在邊長(zhǎng)均為1的小正方形組成的網(wǎng)格中,連接小正方形的三個(gè)頂點(diǎn),可得△ABC,則AB邊上的高是( 。
分析:求出三角形ABC的面積,再根據(jù)三角形的面積公式即可求得AB邊上的高.
解答:
解:S△ABC=S正方形ADEF-S△ADC-S△EBC-S△ABF=4-1-
1
2
-1=
3
2

在Rt△ABF中,AB=
AF2+BF2
=
5
,
∵S△ABC=
1
2
AB×h=
3
2
,
∴可得h=
3
5
5
,即AB邊上的高是
3
5
5

故選A.
點(diǎn)評(píng):本題考查了勾股定理的知識(shí),求△ABC的面積要用正方形的面積減去三個(gè)直角三角形的面積是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,在邊長(zhǎng)均為1的小正方形網(wǎng)格紙中,△OAB的頂點(diǎn)O、A、B均在格點(diǎn)上,且O是直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上.
(1)以O(shè)為位似中心,將△OAB放大,使得放大后的△OA1B1與△OAB對(duì)應(yīng)線段的比為2:1,畫出△OA1B1
(2)在(1)的條件下,若線段AB上的一點(diǎn)P的坐標(biāo)為(a,b),請(qǐng)寫出放大后,P點(diǎn)的對(duì)應(yīng)點(diǎn)P1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在邊長(zhǎng)均為l的小正方形網(wǎng)格紙中,△ABC的頂點(diǎn)A、B、C均在格點(diǎn)上,O為直角坐標(biāo)系的原點(diǎn),點(diǎn)A(-1,0)在x軸上.
(1)以O(shè)為位似中心,將△ABC放大,使得放大后的△A1B1C1與△ABC的相似比為2:1,要求所畫△A1B1C1與△ABC在原點(diǎn)兩側(cè);
(2)分別寫出B1、C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州二模)如圖,在邊長(zhǎng)均為1的小正方形網(wǎng)格紙中,△OAB的頂點(diǎn)O、A、B均在格點(diǎn)上,且O是直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上.
(1)以O(shè)為位似中心,將△OAB放大,使得放大后的△OA1B1與△OAB對(duì)應(yīng)線段的比為2:1,畫出△OA1B1;(所畫△OA1B1與△OAB在原點(diǎn)兩側(cè))
(2)再將△OA1B1繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°得到△OA2B2,畫出△OA2B2
(3)寫出點(diǎn)A1、B1、A2、B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)均為1的小正方形網(wǎng)格紙中,△OAB的頂點(diǎn)O、A、B均在格點(diǎn)上,且O是直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上.
(1)將△OAB放大,使得放大后的△OA1B1與△OAB對(duì)應(yīng)線段的比為2:1,畫出△OA1B1.(所畫△OA1B1與△OAB在原點(diǎn)兩側(cè)).
(2)求出線段A1B1所在直線的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案