把圖一的矩形紙片ABCD折疊,B、C兩點(diǎn)恰好重合落在AD邊上的點(diǎn)P處(如圖二).已知∠MPN=90°,PM=3,PN=4,那么矩形紙片ABCD的面積為   
【答案】分析:利用折疊的性質(zhì)和勾股定理可知.
解答:解:由勾股定理得,MN=5,
設(shè)Rt△PMN的斜邊上的高為h,由矩形的寬AB也為h,
根據(jù)直角三角形的面積公式得,h=PM•PN÷MN=,
由折疊的性質(zhì)知,BC=PM+MN+PN=12,
∴矩形的面積=AB•BC=
點(diǎn)評(píng):本題利用了:①折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等;②勾股定理,直角三角形和矩形的面積公式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用剪刀將形狀如圖(甲)所示的矩形紙片ABCD沿著直線CM剪成兩部分,其中M為AD的中點(diǎn).用這兩部分紙片可以拼成一些新圖形,例如圖(乙)中的Rt△BCE就是拼成的一個(gè)圖形.
(1)用這兩部分紙片除了可以拼成圖乙中的Rt△BCE外,還可以拼成一些四邊形.請(qǐng)你試一試,把拼好的四邊形分別畫(huà)在圖丙、圖丁的虛框內(nèi);
(2)若利用這兩部分紙片拼成的Rt△BCE是等腰直角三角形,設(shè)原矩形紙片中的邊AB和BC的長(zhǎng)分別為a厘米、b厘米,且a、b恰好是關(guān)于x的方程x2-(m-1)x+m+1=0的兩個(gè)實(shí)數(shù)根,試求出原矩形紙片的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)矩形折疊問(wèn)題:如圖所示,把一張矩形紙片沿對(duì)角線折疊,重合部分是什么圖形,試說(shuō)明理由.
(1)若AB=4,BC=8,求AF.
(2)若對(duì)折使C在AD上,AB=6,BC=10,求AE,DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)把一張矩形紙片(矩形ABCD)按如圖方式折疊,使頂點(diǎn)B和點(diǎn)D重合,折痕為EF.若AB=3cm,BC=5cm,則重疊部分△DEF的面積是( 。
A、7.5cm2B、5.1cm2C、5.2cm2D、7.2cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有一張矩形紙片ABCD,按下面步驟進(jìn)行折疊:
第一步:如圖①,將矩形紙片ABCD折疊,使點(diǎn)B、D重合,點(diǎn)C落在點(diǎn)C′處,得折痕EF;
第二步:如圖②,將五邊形AEFC′D折疊,使AE、C′F重合,得折痕DG,再打開(kāi);
第三步:如圖③,進(jìn)一步折疊,使AE、C′F均落在DG上,點(diǎn)A、C′落在點(diǎn)A′處,點(diǎn)E、F落在點(diǎn)E′處,得折痕MN、QP.
這樣,就可以折出一個(gè)五邊形DMNPQ.
精英家教網(wǎng)
(1)請(qǐng)寫(xiě)出圖①中一組相等的線段
 
寫(xiě)出一組即可;
(2)若這樣折出的五邊形DMNPQ,如圖③,恰好是一個(gè)正五邊形,當(dāng)AB=a,AD=b,DM=m時(shí),有下列結(jié)論:
①a2-b2=2abtan18°;②m=
a2+b2
•tan18°
;
③b=m+atan18°;④b=
3
2
m+mtan18°

其中,正確結(jié)論的序號(hào)是
 
把你認(rèn)為正確結(jié)論的序號(hào)都填上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都一模)如圖,在矩形紙片ABCD中,AB=3,BC=4,把△BCD沿對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)G;E、F分別是C′D和BD上的點(diǎn),線段EF交AD于點(diǎn)H,把△FDE沿EF折疊,使點(diǎn)D落在D′處,點(diǎn)D′恰好與點(diǎn)A重合,則EF=
25
12
25
12

查看答案和解析>>

同步練習(xí)冊(cè)答案