【題目】(本題滿分5分)畫圖并填空:
如圖,在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)C的對(duì)應(yīng)點(diǎn)C′.
(1)畫出平移后的△A′B′C′,(利用網(wǎng)格點(diǎn)和三角板畫圖)
(2)畫出AB邊上的高線CD;
(3)畫出BC邊上的中線AE;
(4)在平移過(guò)程中高CD掃過(guò)的面積為 .(網(wǎng)格中,每一小格單位長(zhǎng)度為1)
【答案】(1)畫圖---1分,(2)高CD ---1分,(3)中線AE---1分,(4)面積為16----2分
【解析】
試題分析:(1)根據(jù)點(diǎn)C平移后的對(duì)應(yīng)點(diǎn)C′的位置,確定點(diǎn)AB的對(duì)應(yīng)點(diǎn)A′B′的位置,然后順次連接A′B′,C′A′,B′C′即可;(2)利用三角板中的直角畫圖即可;(3)根據(jù)中線的定義畫圖即可;(4)利用長(zhǎng)方形的面積減去直角三角形的面積計(jì)算即可.
試題解析:(1)畫圖---1分,(2)高CD ---1分,(3)中線AE---1分,(4)面積為16----2分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B(3,3)在雙曲線y= (x>0)上,點(diǎn)D在雙曲線y= -(x<0)上,點(diǎn)A和點(diǎn)C分別在x軸、y軸的正半軸上,且點(diǎn)A、B、C、D構(gòu)成的四邊形為正方形.
(1)求k的值;(2)求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),E是直線AB、CD內(nèi)部一點(diǎn),AB∥CD,連接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點(diǎn)E,與邊CD交于點(diǎn)F,①②③④分別是被射線FE隔開的四個(gè)區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個(gè)區(qū)域上點(diǎn),猜想:∠PEB、∠PFC、∠EPF之間的關(guān)系.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E.
(1)求證: DE=AD+BE.
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),DE、AD、BE又怎樣的關(guān)系?請(qǐng)直接寫出你的結(jié)論,不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)(點(diǎn)分別在軸的左右兩側(cè))兩點(diǎn),與軸的正半軸交于點(diǎn),頂點(diǎn)為,已知點(diǎn).
⑴.求點(diǎn)的坐標(biāo);
⑵.判斷△的形狀,并說(shuō)明理由;
⑶.將△沿軸向右平移個(gè)單位()得到△.△與△重疊部分(如圖中陰影)面積為,求與的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)報(bào)道,春節(jié)期間微信紅包收發(fā)高達(dá)3270000000次,數(shù)字3270000000用科學(xué)記數(shù)法表示為 _____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,分別以AB、AD為邊向外作等邊△ABE,△ADF,延長(zhǎng)CB交AE于點(diǎn)G,點(diǎn)G落在點(diǎn)A、E之間,連接EF、CF.則以下四個(gè)結(jié)論:①CG⊥AE;②△CDF≌△EBC;③∠CDF =∠EAF;④△ECF是等邊三角形.其中一定正確的是 .(把正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣x2不具有的性質(zhì)是( )
A.開口向上
B.對(duì)稱軸是y軸
C.在對(duì)稱軸的左側(cè),y隨x的增大而增大
D.最高點(diǎn)是原點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某建筑物AC上掛著宣傳條幅BC,小明站在點(diǎn)F處,看條幅頂端B,測(cè)得仰角為30°,再往條幅方向前行40米到達(dá)點(diǎn)E處,看到條幅頂端B,測(cè)得仰角為60°.
(1)求宣傳條幅BC的長(zhǎng)(小明的身高不計(jì),結(jié)果保留根號(hào));
(2)若小明從點(diǎn)F到點(diǎn)E用了80秒鐘,按照這個(gè)速度,小明從點(diǎn)F到點(diǎn)C所用的時(shí)間為多少秒?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com