【題目】如圖,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC邊上的動點,設(shè)BP=x,若能在AC邊上找到一點Q,使∠BQP=90°,則x的取值范圍是

【答案】3≤x≤4
【解析】解:過BP中點O,以BP為直徑作圓, 連接QO,當(dāng)QO⊥AC時,QO最短,即BP最短,
∵∠OQC=∠ABC=90°,∠C=∠C,
∴△ABC∽△OQC,
,
∵AB=3,BC=4,
∴AC=5,
∵BP=x,
∴QO= x,CO=4﹣ x,
,
解得:x=3,
當(dāng)P與C重合時,BP=4,
∴BP=x的取值范圍是:3≤x≤4,
所以答案是:3≤x≤4.

【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和直線與圓的三種位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;直線與圓有三種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣3,0),C(2,0),將△ABC繞點B順時針旋轉(zhuǎn)一定角度后使A落在y軸上,與此同時頂點C恰好落在y= 的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和線段PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率;
(2)若已確定甲打第一場,再從其余三位同學(xué)中隨機(jī)選取一位,求恰好選中乙同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,AC與BD相交于點O,∠A=30°,∠COD=105°.則∠D的大小是(
A.30°
B.45°
C.65°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,李老師設(shè)計了一個探究杠桿平衡條件的實驗:在一個自制類似天平的儀器的左邊固定托盤A中放置一個重物,在右邊的活動托盤B(可左右移動)中放置一定質(zhì)量的砝碼,使得儀器左右平衡,改變活動托盤B與點O的距離x(cm),觀察活動托盤B中砝碼的質(zhì)量y(g)的變化情況.實驗數(shù)據(jù)記錄如下表:

x(cm)

10

15

20

25

30

y(g)

30

20

15

12

10


(1)把上表中(x,y)的各組對應(yīng)值作為點的坐標(biāo),在坐標(biāo)系中描出相應(yīng)的點,用平滑曲線連接這些點;
(2)觀察所畫的圖象,猜測y與x之間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗證;
(3)當(dāng)砝碼的質(zhì)量為24g時,活動托盤B與點O的距離是多少cm?
(4)當(dāng)活動托盤B往左移動時,應(yīng)往活動托盤B中添加還是減少砝碼?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:角平分線上的點到這個角的兩邊距離相等. 已知:
求證:
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(1,0),B(3,0),C(0,3).

(1)求拋物線的表達(dá)式及頂點D的坐標(biāo);
(2)如圖甲,點P是直線BC上方拋物線上一動點,過點P作y軸的平行線,交直線BC于點E,是否存在一點P,使線段PE的長最大?若存在,求出PE長的最大值;若不存在,請說明理由;
(3)如圖乙,過點A作y軸的平行線,交直線BC于點F,連接DA、DB四邊形OAFC沿射線CB方向運(yùn)動,速度為每秒1個單位長度,運(yùn)動時間為t秒,當(dāng)點C與點B重合時立即停止運(yùn)動,設(shè)運(yùn)動過程中四邊形OAFC與四邊形ADBF重疊部分面積為S,請求出S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=30°,點M,N分別在邊OA,OB上,OM= ,ON=3 ,點P,Q分別在邊OB,OA上運(yùn)動,連接MP,PQ,QN,則MP+PQ+QN的最小值為

查看答案和解析>>

同步練習(xí)冊答案